Solveeit Logo

Question

Question: ILLUSTRATION 8 The resistivity of sea water is about 25 $\Omega$cm. The charge carriers are chiefly ...

ILLUSTRATION 8 The resistivity of sea water is about 25 Ω\Omegacm. The charge carriers are chiefly Na+Na^+ and ClCl^- ions, and of each there are about 3x102010^{20} cm3cm^{-3}. If we fill a plastic tube 2 m long with sea water and connect a 12 V battery to the electrodes at each end, what is the resulting average drift velocity of the ions, in cms1cms^{-1}?

A

2.5 x 10510^{-5} cms1cms^{-1}

B

2.5 x 10710^{-7} cms1cms^{-1}

C

5.0 x 10510^{-5} cms1cms^{-1}

D

5.0 x 10710^{-7} cms1cms^{-1}

Answer

2.5 x 10510^{-5} cms1cms^{-1}

Explanation

Solution

Explanation of the Solution

The problem asks for the average drift velocity of ions in sea water under a given electric field.

  1. Identify given quantities and convert units:

    • Resistivity, ρ=25Ωcm=0.25Ωm\rho = 25 \, \Omega \text{cm} = 0.25 \, \Omega \text{m}.
    • Concentration of Na+Na^+ ions, nNa+=3×1020cm3n_{Na^+} = 3 \times 10^{20} \, \text{cm}^{-3}.
    • Concentration of ClCl^- ions, nCl=3×1020cm3n_{Cl^-} = 3 \times 10^{20} \, \text{cm}^{-3}.
    • Total charge carrier concentration, n=nNa++nCl=6×1020cm3n = n_{Na^+} + n_{Cl^-} = 6 \times 10^{20} \, \text{cm}^{-3}.
    • Convert nn to SI units (m3m^{-3}): n=6×1020×(102)3m3=6×1026m3n = 6 \times 10^{20} \times (10^2)^3 \, \text{m}^{-3} = 6 \times 10^{26} \, \text{m}^{-3}.
    • Charge of an ion, q=e=1.6×1019Cq = e = 1.6 \times 10^{-19} \, \text{C}.
    • Length of the tube, L=2mL = 2 \, \text{m}.
    • Applied voltage, V=12VV = 12 \, \text{V}.
  2. Calculate conductivity (σ\sigma) and electric field (EE):

    • Conductivity is the reciprocal of resistivity: σ=1ρ=10.25Ωm=4Ω1m1\sigma = \frac{1}{\rho} = \frac{1}{0.25 \, \Omega \text{m}} = 4 \, \Omega^{-1} \text{m}^{-1}.
    • Electric field strength: E=VL=12V2m=6V/mE = \frac{V}{L} = \frac{12 \, \text{V}}{2 \, \text{m}} = 6 \, \text{V/m}.
  3. Relate current density (JJ), conductivity (σ\sigma), and electric field (EE):

    • Using Ohm's Law in point form: J=σEJ = \sigma E.
    • J=(4Ω1m1)×(6V/m)=24A/m2J = (4 \, \Omega^{-1} \text{m}^{-1}) \times (6 \, \text{V/m}) = 24 \, \text{A/m}^2.
  4. Relate current density (JJ), carrier concentration (nn), charge (qq), and drift velocity (vdv_d):

    • The current density is also given by J=nqvdJ = nq v_d, where nn is the total number of charge carriers per unit volume and vdv_d is their average drift velocity.
    • Rearrange to solve for vdv_d: vd=Jnqv_d = \frac{J}{nq}.
  5. Calculate the drift velocity:

    • vd=24A/m2(6×1026m3)×(1.6×1019C)v_d = \frac{24 \, \text{A/m}^2}{(6 \times 10^{26} \, \text{m}^{-3}) \times (1.6 \times 10^{-19} \, \text{C})}.
    • vd=249.6×107AmC=2.5×107m/sv_d = \frac{24}{9.6 \times 10^7} \, \frac{\text{A} \cdot \text{m}}{\text{C}} = 2.5 \times 10^{-7} \, \text{m/s}.
  6. Convert the drift velocity to the required units (cms1cms^{-1}):

    • vd=2.5×107m/s×100cm1m=2.5×105cm/sv_d = 2.5 \times 10^{-7} \, \text{m/s} \times \frac{100 \, \text{cm}}{1 \, \text{m}} = 2.5 \times 10^{-5} \, \text{cm/s}.