Solveeit Logo

Question

Question: In the circuit shown in figure, the emfs of batteries are $E_1$ and $E_2$ which have internal resist...

In the circuit shown in figure, the emfs of batteries are E1E_1 and E2E_2 which have internal resistances R1R_1 and R2R_2. At what value of the resistance RR will the thermal power generated in it be the highest? What it is?

A

The thermal power generated in resistance RR is highest when R=R1R2R1+R2R = \frac{R_1 R_2}{R_1 + R_2}.

B

The thermal power generated in resistance RR is highest when R=R1+R2R = R_1 + R_2.

C

The thermal power generated in resistance RR is highest when R=E1R2+E2R1R1+R2R = \frac{E_1 R_2 + E_2 R_1}{R_1 + R_2}.

D

The thermal power generated in resistance RR is highest when R=E1R1+E2R2R = \frac{E_1}{R_1} + \frac{E_2}{R_2}.

Answer

The thermal power generated in resistance RR is highest when R=R1R2R1+R2R = \frac{R_1 R_2}{R_1 + R_2}. The highest thermal power generated is Pmax=(E1R2+E2R1)24R1R2(R1+R2)P_{max} = \frac{(E_1 R_2 + E_2 R_1)^2}{4 R_1 R_2 (R_1 + R_2)}.

Explanation

Solution

The thermal power generated in resistor RR is given by P=V2RP = \frac{V^2}{R}, where VV is the voltage across RR. By applying Kirchhoff's laws, we can express VV in terms of the circuit parameters. The currents through the branches with batteries are I1=E1VR1I_1 = \frac{E_1 - V}{R_1} and I2=E2VR2I_2 = \frac{E_2 - V}{R_2}. By Kirchhoff's current law at the junction, I1+I2=VRI_1 + I_2 = \frac{V}{R}. Substituting the expressions for I1I_1 and I2I_2: E1VR1+E2VR2=VR\frac{E_1 - V}{R_1} + \frac{E_2 - V}{R_2} = \frac{V}{R} E1R1+E2R2=V(1R+1R1+1R2)\frac{E_1}{R_1} + \frac{E_2}{R_2} = V \left( \frac{1}{R} + \frac{1}{R_1} + \frac{1}{R_2} \right) Let S=E1R1+E2R2S = \frac{E_1}{R_1} + \frac{E_2}{R_2} and G=1R1+1R2G = \frac{1}{R_1} + \frac{1}{R_2}. Then, S=V(1R+G)S = V \left( \frac{1}{R} + G \right), which gives V=S1R+G=SR1+GRV = \frac{S}{\frac{1}{R} + G} = \frac{SR}{1 + GR}. The power is P(R)=V2R=1R(SR1+GR)2=S2R(1+GR)2P(R) = \frac{V^2}{R} = \frac{1}{R} \left( \frac{SR}{1 + GR} \right)^2 = \frac{S^2 R}{(1 + GR)^2}. To maximize P(R)P(R), we find dPdR\frac{dP}{dR} and set it to zero: dPdR=S2(1+GR)2R2(1+GR)G(1+GR)4=S21GR(1+GR)3\frac{dP}{dR} = S^2 \frac{(1+GR)^2 - R \cdot 2(1+GR)G}{(1+GR)^4} = S^2 \frac{1 - GR}{(1+GR)^3} Setting dPdR=0\frac{dP}{dR} = 0 gives 1GR=01 - GR = 0, so R=1GR = \frac{1}{G}. Substituting G=1R1+1R2=R1+R2R1R2G = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}, we get: R=1R1+R2R1R2=R1R2R1+R2R = \frac{1}{\frac{R_1 + R_2}{R_1 R_2}} = \frac{R_1 R_2}{R_1 + R_2} The maximum power is obtained by substituting R=1GR = \frac{1}{G} into the power equation: Pmax=S2(1/G)(1+G(1/G))2=S2/G22=S24GP_{max} = \frac{S^2 (1/G)}{(1 + G(1/G))^2} = \frac{S^2/G}{2^2} = \frac{S^2}{4G} Substituting S=E1R1+E2R2=E1R2+E2R1R1R2S = \frac{E_1}{R_1} + \frac{E_2}{R_2} = \frac{E_1 R_2 + E_2 R_1}{R_1 R_2} and G=R1+R2R1R2G = \frac{R_1 + R_2}{R_1 R_2}: Pmax=14(R1+R2R1R2)(E1R2+E2R1R1R2)2=R1R24(R1+R2)(E1R2+E2R1)2(R1R2)2=(E1R2+E2R1)24R1R2(R1+R2)P_{max} = \frac{1}{4 \left( \frac{R_1 + R_2}{R_1 R_2} \right)} \left( \frac{E_1 R_2 + E_2 R_1}{R_1 R_2} \right)^2 = \frac{R_1 R_2}{4 (R_1 + R_2)} \frac{(E_1 R_2 + E_2 R_1)^2}{(R_1 R_2)^2} = \frac{(E_1 R_2 + E_2 R_1)^2}{4 R_1 R_2 (R_1 + R_2)}