Solveeit Logo

Question

Question: The thermochemical equation for the combustion of ethylene gas, $C_2H_4$, is $C_2H_4(g) + 3O_2(g) \...

The thermochemical equation for the combustion of ethylene gas, C2H4C_2H_4, is

C2H4(g)+3O2(g)2CO2(g)+2H2O(l);C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l);

ΔHΘ=337 kcal\Delta H^\Theta = -337 \text{ kcal}

Assuming 70% efficiency, calculate the weight of water at 20C20^\circ C that can be converted into steam at 100C100^\circ C by burning 1m31 m^3 of C2H4C_2H_4 gas measured at STP. The heat of vaporisation of water at 20C20^\circ C and 100C100^\circ C are 1.00 kcal kg11.00 \text{ kcal kg}^{-1} and 540 kcal kg1540 \text{ kcal kg}^{-1} respectively.

Answer

170 kg

Explanation

Solution

The problem asks to calculate the mass of water that can be converted into steam by burning a given volume of ethylene gas, considering the efficiency of the process and the heat required for water's phase change and temperature increase.

1. Calculate the total heat released by the combustion of ethylene: The thermochemical equation for the combustion of ethylene is: C2H4(g)+3O2(g)2CO2(g)+2H2O(l);ΔHΘ=337 kcalC_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 2H_2O(l); \Delta H^\Theta = -337 \text{ kcal} This means that 1 mole of C2H4C_2H_4 releases 337 kcal of heat upon combustion.

First, determine the number of moles of C2H4C_2H_4 in 1m31 m^3 at STP. At STP (Standard Temperature and Pressure, 0C0^\circ C and 1 atm), 1 mole of any ideal gas occupies 22.4 L. Given volume of C2H4=1m3=1000 LC_2H_4 = 1 m^3 = 1000 \text{ L}. Number of moles of C2H4=Volume of C2H4Molar volume at STP=1000 L22.4 L/mol44.643 molC_2H_4 = \frac{\text{Volume of } C_2H_4}{\text{Molar volume at STP}} = \frac{1000 \text{ L}}{22.4 \text{ L/mol}} \approx 44.643 \text{ mol}.

Total heat released (QtotalQ_{total}) by burning 1m31 m^3 of C2H4C_2H_4: Qtotal=Moles of C2H4×Heat released per moleQ_{total} = \text{Moles of } C_2H_4 \times \text{Heat released per mole} Qtotal=44.643 mol×337 kcal/mol=15049.251 kcalQ_{total} = 44.643 \text{ mol} \times 337 \text{ kcal/mol} = 15049.251 \text{ kcal}.

2. Calculate the useful heat available: The efficiency of the process is given as 70%. Useful heat (QusefulQ_{useful}) = Qtotal×EfficiencyQ_{total} \times \text{Efficiency} Quseful=15049.251 kcal×0.70=10534.4757 kcalQ_{useful} = 15049.251 \text{ kcal} \times 0.70 = 10534.4757 \text{ kcal}.

3. Calculate the heat required to convert water at 20C20^\circ C to steam at 100C100^\circ C per kg of water: This process involves two steps: a. Heating water from 20C20^\circ C to 100C100^\circ C: The problem states "heat of vaporisation of water at 20C20^\circ C and 100C100^\circ C are 1.00 kcal kg11.00 \text{ kcal kg}^{-1} and 540 kcal kg1540 \text{ kcal kg}^{-1} respectively." The value 1.00 kcal kg11.00 \text{ kcal kg}^{-1} for heat of vaporization at 20C20^\circ C is physically incorrect (actual value is around 585 kcal kg1585 \text{ kcal kg}^{-1}). It is highly probable that 1.00 kcal kg11.00 \text{ kcal kg}^{-1} is intended to be the specific heat capacity of water (c = 1.00 \text{ kcal kg}^{-1} ^\circ C^{-1}), which is a common approximation. We will proceed with this interpretation. Heat required (Q1Q_1) = mass (mm) ×\times specific heat capacity (cc) ×\times temperature change (ΔT\Delta T) For 1 kg of water: Q_1 = 1 \text{ kg} \times 1.00 \text{ kcal kg}^{-1} ^\circ C^{-1} \times (100^\circ C - 20^\circ C) Q1=1×1×80=80 kcalQ_1 = 1 \times 1 \times 80 = 80 \text{ kcal}.

b. Vaporizing water at 100C100^\circ C: Heat required (Q2Q_2) = mass (mm) ×\times latent heat of vaporization (LvL_v) The latent heat of vaporization of water at 100C100^\circ C is given as 540 kcal kg1540 \text{ kcal kg}^{-1}. For 1 kg of water: Q2=1 kg×540 kcal kg1=540 kcalQ_2 = 1 \text{ kg} \times 540 \text{ kcal kg}^{-1} = 540 \text{ kcal}.

Total heat required per kg of water (Qper_kgQ_{per\_kg}) = Q1+Q2=80 kcal+540 kcal=620 kcal/kgQ_1 + Q_2 = 80 \text{ kcal} + 540 \text{ kcal} = 620 \text{ kcal/kg}.

4. Calculate the weight (mass) of water that can be converted: Let mwaterm_{water} be the mass of water in kg. The useful heat available must be equal to the total heat required to convert mwaterm_{water} kg of water. Quseful=mwater×Qper_kgQ_{useful} = m_{water} \times Q_{per\_kg} 10534.4757 kcal=mwater×620 kcal/kg10534.4757 \text{ kcal} = m_{water} \times 620 \text{ kcal/kg} mwater=10534.4757 kcal620 kcal/kg169.911 kgm_{water} = \frac{10534.4757 \text{ kcal}}{620 \text{ kcal/kg}} \approx 169.911 \text{ kg}.

Rounding to a practical number of significant figures (e.g., three), the mass of water is approximately 170 kg.

The final answer is 170 kg\boxed{\text{170 kg}}.

Explanation of the solution:

  1. Calculate moles of C2H4C_2H_4 from its volume at STP (1m3=1000 L1 m^3 = 1000 \text{ L}), using molar volume 22.4 L/mol.
  2. Multiply moles of C2H4C_2H_4 by its molar heat of combustion (337 kcal/mol) to get total heat released.
  3. Apply the 70% efficiency to find the useful heat available.
  4. Calculate the heat required to convert 1 kg of water from 20C20^\circ C to steam at 100C100^\circ C. This involves heating the water to 100C100^\circ C (using specific heat capacity, assumed 1 \text{ kcal kg}^{-1} ^\circ C^{-1}) and then vaporizing it at 100C100^\circ C (using latent heat of vaporization 540 kcal kg1540 \text{ kcal kg}^{-1}).
  5. Divide the useful heat available by the heat required per kg of water to find the total mass of water that can be converted.