Solveeit Logo

Question

Question: White coherent light (4000-7000 Å) is sent through the slits of a YDSE. The separation between the s...

White coherent light (4000-7000 Å) is sent through the slits of a YDSE. The separation between the slits is 0.5 mm and screen is 50 cm away from the slits. There is a hole in the screen at a point 1.0 mm away (along the width of the fringe) from the central line. (a) Which wavelength(s) will be absent in the light coming from the hole? (b) Which wavelength(s) will have a strong intensity?

Answer

(a) 4000 Å and 6667 Å (b) 5000 Å

Explanation

Solution

For a YDSE, the position of bright fringes is given by y=nλDdy = \frac{n\lambda D}{d} and dark fringes by y=(k+1/2)λDdy = \frac{(k + 1/2)\lambda D}{d}. Here, d=0.5 mmd = 0.5 \text{ mm}, D=0.5 mD = 0.5 \text{ m}, and y=1.0 mmy = 1.0 \text{ mm}. Thus, ydD=(1.0×103 m)(0.5×103 m)0.5 m=1.0×106 m2\frac{yd}{D} = \frac{(1.0 \times 10^{-3} \text{ m})(0.5 \times 10^{-3} \text{ m})}{0.5 \text{ m}} = 1.0 \times 10^{-6} \text{ m}^2.

(a) For absent wavelengths (dark fringes), λ=yd(k+1/2)D=1.0×106 m2k+1/2\lambda = \frac{yd}{(k+1/2)D} = \frac{1.0 \times 10^{-6} \text{ m}^2}{k+1/2}. For 4000 A˚λ7000 A˚4000 \text{ Å} \le \lambda \le 7000 \text{ Å}, we have 4.0×107 m1.0×106k+1/27.0×107 m4.0 \times 10^{-7} \text{ m} \le \frac{1.0 \times 10^{-6}}{k+1/2} \le 7.0 \times 10^{-7} \text{ m}. This implies 1.428k+1/22.51.428 \le k+1/2 \le 2.5. The possible values for k+1/2k+1/2 are 1.51.5 (for k=1k=1) and 2.52.5 (for k=2k=2). For k+1/2=1.5k+1/2 = 1.5, λ=1.0×1061.56667 A˚\lambda = \frac{1.0 \times 10^{-6}}{1.5} \approx 6667 \text{ Å}. For k+1/2=2.5k+1/2 = 2.5, λ=1.0×1062.5=4000 A˚\lambda = \frac{1.0 \times 10^{-6}}{2.5} = 4000 \text{ Å}.

(b) For strong intensity (bright fringes), λ=ydnD=1.0×106 m2n\lambda = \frac{yd}{nD} = \frac{1.0 \times 10^{-6} \text{ m}^2}{n}. For 4000 A˚λ7000 A˚4000 \text{ Å} \le \lambda \le 7000 \text{ Å}, we have 4.0×107 m1.0×106n7.0×107 m4.0 \times 10^{-7} \text{ m} \le \frac{1.0 \times 10^{-6}}{n} \le 7.0 \times 10^{-7} \text{ m}. This implies 1.428n2.51.428 \le n \le 2.5. The only integer value for nn is 22. For n=2n=2, λ=1.0×1062=5000 A˚\lambda = \frac{1.0 \times 10^{-6}}{2} = 5000 \text{ Å}.