Solveeit Logo

Question

Question: White light is incident normally on a glass plate of thickness 0.50 × $10^{-6}$ and index of refract...

White light is incident normally on a glass plate of thickness 0.50 × 10610^{-6} and index of refraction 1.50. Which wavelengths in the visible region (400 nm-700 nm) are strongly reflected by the plate?

Answer

The wavelengths in the visible region (400 nm-700 nm) that are strongly reflected by the plate are approximately 428.57 nm and 600 nm.

Explanation

Solution

For normal incidence, the optical path difference (OPD) between the two reflected rays is 2μt2\mu t. There is a phase shift of π\pi at the first air-glass interface (since μglass>μair\mu_{glass} > \mu_{air}) and no phase shift at the second glass-air interface (since μair<μglass\mu_{air} < \mu_{glass}). The net phase difference due to reflections is π\pi.

For constructive interference (strong reflection), the condition is: 2μt=(m+1/2)λ2\mu t = (m + 1/2)\lambda

Given: t=0.50×106t = 0.50 \times 10^{-6} m μ=1.50\mu = 1.50

Calculate 2μt2\mu t: 2μt=2×1.50×(0.50×106m)=1.5×106m=1500nm2\mu t = 2 \times 1.50 \times (0.50 \times 10^{-6} \, \text{m}) = 1.5 \times 10^{-6} \, \text{m} = 1500 \, \text{nm}.

The condition becomes: 1500nm=(m+0.5)λ1500 \, \text{nm} = (m + 0.5)\lambda λ=1500m+0.5nm\lambda = \frac{1500}{m + 0.5} \, \text{nm}

We need to find wavelengths λ\lambda in the visible region (400 nm - 700 nm). For λmin=400\lambda_{min} = 400 nm: 400=1500m+0.5    m+0.5=1500400=3.75    m=3.25400 = \frac{1500}{m + 0.5} \implies m + 0.5 = \frac{1500}{400} = 3.75 \implies m = 3.25.

For λmax=700\lambda_{max} = 700 nm: 700=1500m+0.5    m+0.5=15007002.143    m1.643700 = \frac{1500}{m + 0.5} \implies m + 0.5 = \frac{1500}{700} \approx 2.143 \implies m \approx 1.643.

The integer values for mm in the range [1.643,3.25][1.643, 3.25] are m=2m=2 and m=3m=3.

For m=2m=2: λ=15002+0.5=15002.5=600nm\lambda = \frac{1500}{2 + 0.5} = \frac{1500}{2.5} = 600 \, \text{nm}.

For m=3m=3: λ=15003+0.5=15003.5=30007428.57nm\lambda = \frac{1500}{3 + 0.5} = \frac{1500}{3.5} = \frac{3000}{7} \approx 428.57 \, \text{nm}.

These are the wavelengths strongly reflected.