Solveeit Logo

Question

Question: Evaluate $\lim_{x\to \frac{3\pi}{4}} \frac{1+\sqrt[3]{\tan x}}{1-2\cos^2 x}$....

Evaluate limx3π41+tanx312cos2x\lim_{x\to \frac{3\pi}{4}} \frac{1+\sqrt[3]{\tan x}}{1-2\cos^2 x}.

Answer

The limit is -1/3

Explanation

Solution

The problem asks us to evaluate the limit: limx3π41+tanx312cos2x\lim_{x\to \frac{3\pi}{4}} \frac{1+\sqrt[3]{\tan x}}{1-2\cos^2 x}

Step 1: Check for indeterminate form. Substitute x=3π4x = \frac{3\pi}{4} into the expression: Numerator: 1+tan(3π4)3=1+13=11=01+\sqrt[3]{\tan(\frac{3\pi}{4})} = 1+\sqrt[3]{-1} = 1-1 = 0. Denominator: 12cos2(3π4)1-2\cos^2(\frac{3\pi}{4}). We know cos(3π4)=12\cos(\frac{3\pi}{4}) = -\frac{1}{\sqrt{2}}. So, 12(12)2=12(12)=11=01-2\left(-\frac{1}{\sqrt{2}}\right)^2 = 1-2\left(\frac{1}{2}\right) = 1-1 = 0. Since the limit is of the 00\frac{0}{0} indeterminate form, we can apply L'Hopital's Rule.

Step 2: Apply L'Hopital's Rule. Let f(x)=1+tanx3f(x) = 1+\sqrt[3]{\tan x} and g(x)=12cos2xg(x) = 1-2\cos^2 x. L'Hopital's Rule states that if limxcf(x)g(x)\lim_{x\to c} \frac{f(x)}{g(x)} is of the form 00\frac{0}{0} or \frac{\infty}{\infty}, then limxcf(x)g(x)=limxcf(x)g(x)\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}, provided the latter limit exists.

Step 3: Calculate the derivatives of the numerator and the denominator. For the numerator, f(x)=1+(tanx)1/3f(x) = 1+(\tan x)^{1/3}: f(x)=ddx(1+(tanx)1/3)=0+13(tanx)131ddx(tanx)f'(x) = \frac{d}{dx}(1+(\tan x)^{1/3}) = 0 + \frac{1}{3}(\tan x)^{\frac{1}{3}-1} \cdot \frac{d}{dx}(\tan x) f(x)=13(tanx)2/3sec2x=sec2x3(tanx)2/3f'(x) = \frac{1}{3}(\tan x)^{-2/3} \cdot \sec^2 x = \frac{\sec^2 x}{3(\tan x)^{2/3}}

For the denominator, g(x)=12cos2xg(x) = 1-2\cos^2 x: g(x)=ddx(12cos2x)=02(2cosx(sinx))g'(x) = \frac{d}{dx}(1-2\cos^2 x) = 0 - 2 \cdot (2\cos x \cdot (-\sin x)) g(x)=4sinxcosxg'(x) = 4\sin x \cos x Using the double angle identity sin(2x)=2sinxcosx\sin(2x) = 2\sin x \cos x, we can simplify g(x)g'(x): g(x)=2(2sinxcosx)=2sin(2x)g'(x) = 2(2\sin x \cos x) = 2\sin(2x)

Step 4: Evaluate the derivatives at x=3π4x = \frac{3\pi}{4}. For f(3π4)f'(\frac{3\pi}{4}): We know tan(3π4)=1\tan(\frac{3\pi}{4}) = -1 and cos(3π4)=12\cos(\frac{3\pi}{4}) = -\frac{1}{\sqrt{2}}, so sec(3π4)=1cos(3π4)=2\sec(\frac{3\pi}{4}) = \frac{1}{\cos(\frac{3\pi}{4})} = -\sqrt{2}. f(3π4)=(2)23(1)2/3=23((1)2)1/3=23(1)1/3=231=23f'(\frac{3\pi}{4}) = \frac{(-\sqrt{2})^2}{3(-1)^{2/3}} = \frac{2}{3 \cdot ((-1)^2)^{1/3}} = \frac{2}{3 \cdot (1)^{1/3}} = \frac{2}{3 \cdot 1} = \frac{2}{3}

For g(3π4)g'(\frac{3\pi}{4}): g(3π4)=2sin(23π4)=2sin(3π2)g'(\frac{3\pi}{4}) = 2\sin\left(2 \cdot \frac{3\pi}{4}\right) = 2\sin\left(\frac{3\pi}{2}\right) We know sin(3π2)=1\sin(\frac{3\pi}{2}) = -1. g(3π4)=2(1)=2g'(\frac{3\pi}{4}) = 2(-1) = -2

Step 5: Compute the limit. limx3π41+tanx312cos2x=f(3π4)g(3π4)=2/32=23(2)=13\lim_{x\to \frac{3\pi}{4}} \frac{1+\sqrt[3]{\tan x}}{1-2\cos^2 x} = \frac{f'(\frac{3\pi}{4})}{g'(\frac{3\pi}{4})} = \frac{2/3}{-2} = \frac{2}{3 \cdot (-2)} = -\frac{1}{3}

The final answer is 13-\frac{1}{3}.

Explanation of the solution: The limit is of the 00\frac{0}{0} indeterminate form. L'Hopital's Rule is applied. The derivatives of the numerator (1+tanx31+\sqrt[3]{\tan x}) and the denominator (12cos2x1-2\cos^2 x) are calculated as sec2x3(tanx)2/3\frac{\sec^2 x}{3(\tan x)^{2/3}} and 2sin(2x)2\sin(2x) respectively. Evaluating these derivatives at x=3π4x=\frac{3\pi}{4} yields 23\frac{2}{3} for the numerator's derivative and 2-2 for the denominator's derivative. The ratio of these values gives the limit, which is 13-\frac{1}{3}.