Question
Question: Evaluate $\lim_{x\to \frac{3\pi}{4}} \frac{1+\sqrt[3]{\tan x}}{1-2\cos^2 x}$....
Evaluate limx→43π1−2cos2x1+3tanx.

The limit is -1/3
Solution
The problem asks us to evaluate the limit: limx→43π1−2cos2x1+3tanx
Step 1: Check for indeterminate form. Substitute x=43π into the expression: Numerator: 1+3tan(43π)=1+3−1=1−1=0. Denominator: 1−2cos2(43π). We know cos(43π)=−21. So, 1−2(−21)2=1−2(21)=1−1=0. Since the limit is of the 00 indeterminate form, we can apply L'Hopital's Rule.
Step 2: Apply L'Hopital's Rule. Let f(x)=1+3tanx and g(x)=1−2cos2x. L'Hopital's Rule states that if limx→cg(x)f(x) is of the form 00 or ∞∞, then limx→cg(x)f(x)=limx→cg′(x)f′(x), provided the latter limit exists.
Step 3: Calculate the derivatives of the numerator and the denominator. For the numerator, f(x)=1+(tanx)1/3: f′(x)=dxd(1+(tanx)1/3)=0+31(tanx)31−1⋅dxd(tanx) f′(x)=31(tanx)−2/3⋅sec2x=3(tanx)2/3sec2x
For the denominator, g(x)=1−2cos2x: g′(x)=dxd(1−2cos2x)=0−2⋅(2cosx⋅(−sinx)) g′(x)=4sinxcosx Using the double angle identity sin(2x)=2sinxcosx, we can simplify g′(x): g′(x)=2(2sinxcosx)=2sin(2x)
Step 4: Evaluate the derivatives at x=43π. For f′(43π): We know tan(43π)=−1 and cos(43π)=−21, so sec(43π)=cos(43π)1=−2. f′(43π)=3(−1)2/3(−2)2=3⋅((−1)2)1/32=3⋅(1)1/32=3⋅12=32
For g′(43π): g′(43π)=2sin(2⋅43π)=2sin(23π) We know sin(23π)=−1. g′(43π)=2(−1)=−2
Step 5: Compute the limit. limx→43π1−2cos2x1+3tanx=g′(43π)f′(43π)=−22/3=3⋅(−2)2=−31
The final answer is −31.
Explanation of the solution: The limit is of the 00 indeterminate form. L'Hopital's Rule is applied. The derivatives of the numerator (1+3tanx) and the denominator (1−2cos2x) are calculated as 3(tanx)2/3sec2x and 2sin(2x) respectively. Evaluating these derivatives at x=43π yields 32 for the numerator's derivative and −2 for the denominator's derivative. The ratio of these values gives the limit, which is −31.