Solveeit Logo

Question

Question: Evaluate $\lim_{x\to 1}\frac{x^2+x\log_e x-\log_ex-1}{(x^2-1)}.$...

Evaluate limx1x2+xlogexlogex1(x21).\lim_{x\to 1}\frac{x^2+x\log_e x-\log_ex-1}{(x^2-1)}.

Answer

1

Explanation

Solution

The given limit is: limx1x2+xlogexlogex1(x21)\lim_{x\to 1}\frac{x^2+x\log_e x-\log_ex-1}{(x^2-1)}

First, substitute x=1x=1 into the expression to determine its form:

Numerator: 12+1loge1loge11=1+1001=01^2 + 1 \cdot \log_e 1 - \log_e 1 - 1 = 1 + 1 \cdot 0 - 0 - 1 = 0

Denominator: 121=01^2 - 1 = 0

Since the limit is in the 00\frac{0}{0} indeterminate form, we can use either L'Hopital's Rule or algebraic manipulation.

Method 1: Using L'Hopital's Rule

Let f(x)=x2+xlogexlogex1f(x) = x^2+x\log_e x-\log_ex-1 and g(x)=x21g(x) = x^2-1. We need to find the derivatives of f(x)f(x) and g(x)g(x) with respect to xx.

Derivative of the numerator f(x)f'(x): f(x)=ddx(x2+xlogexlogex1)f'(x) = \frac{d}{dx}(x^2+x\log_e x-\log_ex-1) Using the product rule for xlogexx\log_e x: ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'. Here u=x,v=logexu=x, v=\log_e x, so u=1,v=1xu'=1, v'=\frac{1}{x}. f(x)=2x+(1logex+x1x)1x0f'(x) = 2x + (1 \cdot \log_e x + x \cdot \frac{1}{x}) - \frac{1}{x} - 0 f(x)=2x+logex+11xf'(x) = 2x + \log_e x + 1 - \frac{1}{x}

Derivative of the denominator g(x)g'(x): g(x)=ddx(x21)g'(x) = \frac{d}{dx}(x^2-1) g(x)=2xg'(x) = 2x

Now, apply L'Hopital's Rule: limx1f(x)g(x)=limx12x+logex+11x2x\lim_{x\to 1}\frac{f'(x)}{g'(x)} = \lim_{x\to 1}\frac{2x + \log_e x + 1 - \frac{1}{x}}{2x} Substitute x=1x=1: 2(1)+loge1+1112(1)=2+0+112=22=1\frac{2(1) + \log_e 1 + 1 - \frac{1}{1}}{2(1)} = \frac{2 + 0 + 1 - 1}{2} = \frac{2}{2} = 1

Method 2: Algebraic Manipulation

Factorize the numerator and the denominator.

Numerator: x2+xlogexlogex1x^2+x\log_e x-\log_ex-1

Group terms: (x21)+(xlogexlogex)(x^2-1) + (x\log_e x-\log_ex)

Factor out common terms: (x1)(x+1)+logex(x1)(x-1)(x+1) + \log_e x (x-1)

Factor out (x1)(x-1): (x1)[(x+1)+logex](x-1)[(x+1) + \log_e x]

Denominator: x21x^2-1

Factorize: (x1)(x+1)(x-1)(x+1)

Now, substitute these back into the limit expression: limx1(x1)[(x+1)+logex](x1)(x+1)\lim_{x\to 1}\frac{(x-1)[(x+1) + \log_e x]}{(x-1)(x+1)} Since x1x \to 1, x1x \neq 1, so we can cancel the common term (x1)(x-1): limx1(x+1)+logex(x+1)\lim_{x\to 1}\frac{(x+1) + \log_e x}{(x+1)} Substitute x=1x=1: (1+1)+loge1(1+1)=2+02=22=1\frac{(1+1) + \log_e 1}{(1+1)} = \frac{2 + 0}{2} = \frac{2}{2} = 1

Both methods yield the same result.

Explanation of the solution:

The limit is in the 00\frac{0}{0} indeterminate form.

Method 1 (L'Hopital's Rule): Differentiate the numerator and denominator separately. f(x)=2x+logex+11xf'(x) = 2x + \log_e x + 1 - \frac{1}{x} and g(x)=2xg'(x) = 2x. Substitute x=1x=1 into f(x)g(x)\frac{f'(x)}{g'(x)} to get 2+0+112=22=1\frac{2+0+1-1}{2} = \frac{2}{2} = 1.

Method 2 (Algebraic Manipulation): Factor the numerator as (x1)(x+1)+logex(x1)=(x1)[(x+1)+logex](x-1)(x+1) + \log_e x (x-1) = (x-1)[(x+1) + \log_e x]. Factor the denominator as (x1)(x+1)(x-1)(x+1). Cancel the common (x1)(x-1) term and substitute x=1x=1 into the simplified expression (x+1)+logex(x+1)\frac{(x+1) + \log_e x}{(x+1)} to get 1+1+01+1=22=1\frac{1+1+0}{1+1} = \frac{2}{2} = 1.

The limit evaluates to 1.