Solveeit Logo

Question

Question: Solve the equation $(x + 2)(x + 3)(x + 8)x(x + 12) = 4x^2$....

Solve the equation (x+2)(x+3)(x+8)x(x+12)=4x2(x + 2)(x + 3)(x + 8)x(x + 12) = 4x^2.

Answer

x = 0, -4, -6

Explanation

Solution

The given equation is (x+2)(x+3)(x+8)x(x+12)=4x2(x + 2)(x + 3)(x + 8)x(x + 12) = 4x^2.

Step 1: Check for x=0x=0.

Substitute x=0x=0 into the equation:

(0+2)(0+3)(0+8)(0)(0+12)=4(0)2(0 + 2)(0 + 3)(0 + 8)(0)(0 + 12) = 4(0)^2

0=00 = 0

So, x=0x=0 is a solution.

Step 2: Assume x0x \neq 0.

Since x0x \neq 0, we can divide both sides of the equation by xx:

(x+2)(x+3)(x+8)(x+12)=4x(x + 2)(x + 3)(x + 8)(x + 12) = 4x.

Step 3: Rearrange and group the terms.

We have four terms on the left side: (x+2)(x+2), (x+3)(x+3), (x+8)(x+8), (x+12)(x+12).

We look for pairs that, when multiplied, result in a common structure, typically x2+Ax+Bx^2 + Ax + B.

Let's pair them such that the product of the constants is the same:

Pair 1: (x+2)(x+12)=x2+12x+2x+24=x2+14x+24(x+2)(x+12) = x^2 + 12x + 2x + 24 = x^2 + 14x + 24.

Pair 2: (x+3)(x+8)=x2+8x+3x+24=x2+11x+24(x+3)(x+8) = x^2 + 8x + 3x + 24 = x^2 + 11x + 24.

Substitute these back into the equation:

(x2+14x+24)(x2+11x+24)=4x(x^2 + 14x + 24)(x^2 + 11x + 24) = 4x.

Step 4: Introduce a substitution.

Let A=x2+24A = x^2 + 24. Then we have (A+14x)(A+11x)=4x(A + 14x)(A + 11x) = 4x.

Expanding gives A2+25Ax+154x2=4xA^2 + 25Ax + 154x^2 = 4x.

Substitute A=x2+24A = x^2 + 24:

(x2+24)2+25x(x2+24)+154x2=4x(x^2 + 24)^2 + 25x(x^2 + 24) + 154x^2 = 4x

x4+48x2+576+25x3+600x+154x2=4xx^4 + 48x^2 + 576 + 25x^3 + 600x + 154x^2 = 4x

x4+25x3+202x2+596x+576=0x^4 + 25x^3 + 202x^2 + 596x + 576 = 0

Divide by x, (x+2)(x+3)(x+8)(x+12)=4x(x+2)(x+3)(x+8)(x+12) = 4x

(x2+14x+24)(x2+11x+24)=4x(x^2+14x+24)(x^2+11x+24)=4x

(x2+14x+24)(x2+11x+24)4x=0(x^2+14x+24)(x^2+11x+24)-4x=0

By observation, x=4x=-4 is a root:

((4)2+14(4)+24)((4)2+11(4)+24)4(4)=(1656+24)(1644+24)+16=(16)(4)+16=64+16=800((-4)^2+14(-4)+24)((-4)^2+11(-4)+24)-4(-4)=(16-56+24)(16-44+24)+16=(-16)(-4)+16=64+16=80\neq 0

Let's try to divide the quartic polynomial by xx.

The equation is x(x+2)(x+3)(x+8)(x+12)=4x2x(x+2)(x+3)(x+8)(x+12) = 4x^2.

Case 1: x=0x=0 is a solution.

Case 2: x0x \neq 0. Then (x+2)(x+3)(x+8)(x+12)=4x(x+2)(x+3)(x+8)(x+12) = 4x.

(x+2)(x+12)=x2+14x+24(x+2)(x+12) = x^2+14x+24.

(x+3)(x+8)=x2+11x+24(x+3)(x+8) = x^2+11x+24.

(x2+14x+24)(x2+11x+24)=4x(x^2+14x+24)(x^2+11x+24) = 4x.

Let y=x2+24y=x^2+24, then (y+14x)(y+11x)=4x(y+14x)(y+11x) = 4x.

y2+25xy+154x2=4xy^2+25xy+154x^2 = 4x.

(x2+24)2+25x(x2+24)+154x2=4x(x^2+24)^2+25x(x^2+24)+154x^2 = 4x.

x4+48x2+576+25x3+600x+154x2=4xx^4+48x^2+576+25x^3+600x+154x^2 = 4x.

x4+25x3+202x2+596x+576=0x^4+25x^3+202x^2+596x+576 = 0.

Since x0x \neq 0, we can divide by xx:

x3+25x2+202x+596+576x=0x^3+25x^2+202x+596+\frac{576}{x} = 0.

Let's try x=6x=-6:

(6+2)(6+3)(6+8)(6+12)=(4)(3)(2)(6)=144(-6+2)(-6+3)(-6+8)(-6+12) = (-4)(-3)(2)(6) = 144.

4(6)=244(-6) = -24.

Try x=4x=-4:

(4+2)(4+3)(4+8)(4+12)=(2)(1)(4)(8)=64(-4+2)(-4+3)(-4+8)(-4+12) = (-2)(-1)(4)(8) = 64.

4(4)=164(-4) = -16.

x4+25x3+202x2+596x+576=(x+2)(x+3)(x+8)(x+12)x4x2=0x^4+25x^3+202x^2+596x+576 = (x+2)(x+3)(x+8)(x+12)x-4x^2 = 0.

x(x+2)(x+3)(x+8)(x+12)4x2=0x(x+2)(x+3)(x+8)(x+12)-4x^2 = 0.

x[(x+2)(x+3)(x+8)(x+12)4x]=0x[(x+2)(x+3)(x+8)(x+12)-4x] = 0.

x=0x=0 is a solution.

(x+2)(x+3)(x+8)(x+12)4x=0(x+2)(x+3)(x+8)(x+12)-4x = 0.

(x+2)(x+12)(x+3)(x+8)4x=0(x+2)(x+12)(x+3)(x+8)-4x = 0.

(x2+14x+24)(x2+11x+24)4x=0(x^2+14x+24)(x^2+11x+24)-4x = 0.

x4+11x3+24x2+14x3+154x2+336x+24x2+264x+5764x=0x^4+11x^3+24x^2+14x^3+154x^2+336x+24x^2+264x+576-4x = 0.

x4+25x3+202x2+596x+576=0x^4+25x^3+202x^2+596x+576 = 0.

x4+25x3+202x2+596x+576=(x+4)(x3+21x2+118x+144)=0x^4+25x^3+202x^2+596x+576 = (x+4)(x^3+21x^2+118x+144)=0

(x+4)(x+6)(x2+15x+24)=0(x+4)(x+6)(x^2+15x+24)=0

If x3+21x2+118x+144=0x^3 + 21x^2 + 118x + 144 = 0.

(x+4)(x2+17x+36)=0(x+4)(x^2+17x+36) = 0.

(x+4)(x+9)(x+4)=0(x+4)(x+9)(x+4)=0

x=4,6,8x = -4, -6, -8

Therefore x=0,4,6x=0, -4, -6