Solveeit Logo

Question

Question: While the discharging of a lead storage battery following reaction take place. $PbO_2 + Pb + 4H^\op...

While the discharging of a lead storage battery following reaction take place.

PbO2+Pb+4H+2SO422PbSO4+2H2OPbO_2 + Pb + 4H^\oplus + 2SO_4^{2\ominus} \longrightarrow 2PbSO_4 + 2H_2O ; E° = 2.01

Calculate the energy (in kJ) obtained from a lead storage battery in which 0.014 mol of lead is consumed.

Assume a constant concentration of 10.M H2SO4H_2SO_4 (log2 = 0.3)

Answer

6 kJ

Explanation

Solution

Step 1: Determine the number of electrons (n) transferred in the reaction.

The given reaction is:

PbO2+Pb+4H+2SO422PbSO4+2H2OPbO_2 + Pb + 4H^\oplus + 2SO_4^{2\ominus} \longrightarrow 2PbSO_4 + 2H_2O

In this reaction, Lead (Pb) is oxidized from oxidation state 0 to +2 in PbSO4PbSO_4.

PbPb2++2ePb \longrightarrow Pb^{2+} + 2e^-

Lead dioxide (PbO2PbO_2) is reduced from oxidation state +4 to +2 in PbSO4PbSO_4.

PbO2+4H+2ePb2++2H2OPbO_2 + 4H^\oplus + 2e^- \longrightarrow Pb^{2+} + 2H_2O

The number of electrons transferred (nn) is 2.

Step 2: Calculate the concentrations of HH^\oplus and SO42SO_4^{2\ominus} ions.

Given that the concentration of H2SO4H_2SO_4 is 10M10 \, M. Sulfuric acid dissociates as:

H2SO42H+SO42H_2SO_4 \longrightarrow 2H^\oplus + SO_4^{2\ominus}

Therefore, [H]=2×10M=20M[H^\oplus] = 2 \times 10 \, M = 20 \, M

And [SO42]=1×10M=10M[SO_4^{2\ominus}] = 1 \times 10 \, M = 10 \, M

Step 3: Calculate the cell potential (E) using the Nernst equation.

The Nernst equation is:

E=E0.059nlogQE = E^\circ - \frac{0.059}{n} \log Q

For the given reaction, the reaction quotient QQ is:

Q=[PbSO4]2[H2O]2[PbO2][Pb][H]4[SO42]2Q = \frac{[PbSO_4]^2 [H_2O]^2}{[PbO_2] [Pb] [H^\oplus]^4 [SO_4^{2\ominus}]^2}

Since PbPb, PbO2PbO_2, and PbSO4PbSO_4 are solids, their activities are taken as 1. The activity of water (solvent/product) is also taken as 1.

So, Q=1[H]4[SO42]2Q = \frac{1}{[H^\oplus]^4 [SO_4^{2\ominus}]^2}

Substitute the values: E=2.01VE^\circ = 2.01 \, V, n=2n = 2, [H]=20M[H^\oplus] = 20 \, M, [SO42]=10M[SO_4^{2\ominus}] = 10 \, M.

E=2.010.0592log1[20]4[10]2E = 2.01 - \frac{0.059}{2} \log \frac{1}{[20]^4 [10]^2}

E=2.010.0592log(204×102)E = 2.01 - \frac{0.059}{2} \log (20^{-4} \times 10^{-2})

E=2.010.0592log((2×10)4×102)E = 2.01 - \frac{0.059}{2} \log ((2 \times 10)^{-4} \times 10^{-2})

E=2.010.0592log(24×104×102)E = 2.01 - \frac{0.059}{2} \log (2^{-4} \times 10^{-4} \times 10^{-2})

E=2.010.0592log(24×106)E = 2.01 - \frac{0.059}{2} \log (2^{-4} \times 10^{-6})

E=2.010.0592(4log26log10)E = 2.01 - \frac{0.059}{2} (-4 \log 2 - 6 \log 10)

Given log2=0.3\log 2 = 0.3 and log10=1\log 10 = 1.

E=2.010.0592(4×0.36×1)E = 2.01 - \frac{0.059}{2} (-4 \times 0.3 - 6 \times 1)

E=2.010.0592(1.26)E = 2.01 - \frac{0.059}{2} (-1.2 - 6)

E=2.010.0592(7.2)E = 2.01 - \frac{0.059}{2} (-7.2)

E=2.01+0.059×3.6E = 2.01 + 0.059 \times 3.6

E=2.01+0.2124E = 2.01 + 0.2124

E=2.2224V2.22VE = 2.2224 \, V \approx 2.22 \, V

Step 4: Calculate the energy obtained.

The electrical energy obtained from a galvanic cell is given by:

Energy (WelecW_{elec}) = nmolFEn_{mol}FE

Where nmoln_{mol} is the total moles of electrons transferred, FF is Faraday's constant (96500C/mol96500 \, C/mol), and EE is the cell potential.

Given that 0.014mol0.014 \, mol of lead (Pb) is consumed. From the stoichiometry of the reaction, 1 mole of Pb corresponds to the transfer of 2 moles of electrons.

So, the total moles of electrons transferred (nmoln_{mol}) = 0.014molPb×2mole1molPb=0.028mole0.014 \, mol \, Pb \times \frac{2 \, mol \, e^-}{1 \, mol \, Pb} = 0.028 \, mol \, e^-

Energy = 0.028mol×96500C/mol×2.22V0.028 \, mol \times 96500 \, C/mol \times 2.22 \, V

Energy = 2702×2.22J2702 \times 2.22 \, J

Energy = 5998.44J5998.44 \, J

Converting to kilojoules:

Energy 6000J=6kJ\approx 6000 \, J = 6 \, kJ

Explanation of the solution:

  1. Identify n: From the balanced reaction, 2 electrons are transferred (Pb goes from 0 to +2, PbO2PbO_2 from +4 to +2).

  2. Calculate ion concentrations: 10MH2SO410 \, M \, H_2SO_4 yields 20MH20 \, M \, H^\oplus and 10MSO4210 \, M \, SO_4^{2\ominus}.

  3. Apply Nernst Equation: E=E0.059nlogQE = E^\circ - \frac{0.059}{n} \log Q.

    Q=1[H]4[SO42]2=1[20]4[10]2Q = \frac{1}{[H^\oplus]^4 [SO_4^{2\ominus}]^2} = \frac{1}{[20]^4 [10]^2}.

    Substitute values: E=2.010.0592log(204×102)=2.010.0592(4log26log10)E = 2.01 - \frac{0.059}{2} \log (20^{-4} \times 10^{-2}) = 2.01 - \frac{0.059}{2} (-4 \log 2 - 6 \log 10).

    Using log2=0.3\log 2 = 0.3, E=2.010.0592(4×0.36)=2.010.0592(7.2)=2.01+0.2124=2.22VE = 2.01 - \frac{0.059}{2} (-4 \times 0.3 - 6) = 2.01 - \frac{0.059}{2} (-7.2) = 2.01 + 0.2124 = 2.22 \, V.

  4. Calculate Energy: Energy = nmolFEn_{mol}FE.

    For 0.014mol0.014 \, mol of Pb, nmol=0.014×2=0.028moln_{mol} = 0.014 \times 2 = 0.028 \, mol electrons.

    Energy = 0.028×96500×2.22=5998.44J6kJ0.028 \times 96500 \times 2.22 = 5998.44 \, J \approx 6 \, kJ.