Solveeit Logo

Question

Question: Find the value of $\lim_{x\to 3} \frac{x-2}{x-3}$....

Find the value of limx3x2x3\lim_{x\to 3} \frac{x-2}{x-3}.

Answer

The limit does not exist.

Explanation

Solution

The limit limx3x2x3\lim_{x\to 3} \frac{x-2}{x-3} results in the indeterminate form 10\frac{1}{0} upon direct substitution. Evaluating the left-hand limit (LHL) gives limx3x2x3=\lim_{x\to 3^-} \frac{x-2}{x-3} = -\infty, because the numerator approaches 11 and the denominator approaches 00 from the negative side. Evaluating the right-hand limit (RHL) gives limx3+x2x3=+\lim_{x\to 3^+} \frac{x-2}{x-3} = +\infty, because the numerator approaches 11 and the denominator approaches 00 from the positive side. Since LHL \neq RHL, the limit does not exist.