Solveeit Logo

Question

Question: Calculate the cell e.m.f. and $\Delta G$ for the cell reaction at 298 K for the cell. Zn (s) | $Zn^...

Calculate the cell e.m.f. and ΔG\Delta G for the cell reaction at 298 K for the cell.

Zn (s) | Zn2Zn^{2\oplus} (0.0004M) || Cd2Cd^{2\oplus} (0.2M) | Cd(s)

Given, EZn2ZnoE_{Zn^{2\oplus}|Zn}^o = - 0.763 V; ECd2CdoE_{Cd^{2\oplus}|Cd}^o = - 0.403 V at 298 K. F = 96500 C mol1mol^{-1}.

Answer

E_{cell} = 0.440 V, \Delta G = -84.90 kJ mol^{-1}

Explanation

Solution

1. Identify Anode and Cathode, and write Half-Cell Reactions:

The given standard electrode potentials are: EZn2Zno=0.763 VE_{Zn^{2\oplus}|Zn}^o = -0.763 \text{ V} ECd2Cdo=0.403 VE_{Cd^{2\oplus}|Cd}^o = -0.403 \text{ V}

The species with the more negative standard reduction potential undergoes oxidation (anode). Comparing the two, Zn has a more negative potential than Cd. Therefore, Zn acts as the anode, and Cd2+Cd^{2+} acts as the cathode.

Anode (Oxidation): Zn(s)Zn2+(aq)+2e\text{Zn(s)} \rightarrow \text{Zn}^{2+}\text{(aq)} + 2\text{e}^- Cathode (Reduction): Cd2+(aq)+2eCd(s)\text{Cd}^{2+}\text{(aq)} + 2\text{e}^- \rightarrow \text{Cd(s)}

The overall cell reaction is: Zn(s)+Cd2+(aq)Zn2+(aq)+Cd(s)\text{Zn(s)} + \text{Cd}^{2+}\text{(aq)} \rightarrow \text{Zn}^{2+}\text{(aq)} + \text{Cd(s)} From the overall reaction, the number of electrons transferred (n) is 2.

2. Calculate the Standard Cell Potential (EcelloE_{cell}^o): Ecello=EcathodeoEanodeoE_{cell}^o = E_{cathode}^o - E_{anode}^o Ecello=ECd2CdoEZn2ZnoE_{cell}^o = E_{Cd^{2\oplus}|Cd}^o - E_{Zn^{2\oplus}|Zn}^o Ecello=(0.403 V)(0.763 V)E_{cell}^o = (-0.403 \text{ V}) - (-0.763 \text{ V}) Ecello=0.403 V+0.763 VE_{cell}^o = -0.403 \text{ V} + 0.763 \text{ V} Ecello=0.360 VE_{cell}^o = 0.360 \text{ V}

3. Calculate the Reaction Quotient (Q): For the cell reaction Zn(s)+Cd2+(aq)Zn2+(aq)+Cd(s)\text{Zn(s)} + \text{Cd}^{2+}\text{(aq)} \rightarrow \text{Zn}^{2+}\text{(aq)} + \text{Cd(s)}, the reaction quotient Q is: Q=[Zn2+][Cd2+]Q = \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]} Given concentrations: [Zn2+]=0.0004 M[\text{Zn}^{2+}] = 0.0004 \text{ M} and [Cd2+]=0.2 M[\text{Cd}^{2+}] = 0.2 \text{ M} Q=0.00040.2=4×1042×101=2×103=0.002Q = \frac{0.0004}{0.2} = \frac{4 \times 10^{-4}}{2 \times 10^{-1}} = 2 \times 10^{-3} = 0.002

4. Calculate the Cell e.m.f. (EcellE_{cell}) using the Nernst Equation: The Nernst equation at 298 K (25°C) is: Ecell=Ecello0.0592nlog10QE_{cell} = E_{cell}^o - \frac{0.0592}{n} \log_{10} Q Substitute the calculated values: Ecell=0.360 V0.05922log10(0.002)E_{cell} = 0.360 \text{ V} - \frac{0.0592}{2} \log_{10} (0.002) Ecell=0.360 V0.0296×log10(2×103)E_{cell} = 0.360 \text{ V} - 0.0296 \times \log_{10} (2 \times 10^{-3}) Ecell=0.360 V0.0296×(log102+log10103)E_{cell} = 0.360 \text{ V} - 0.0296 \times (\log_{10} 2 + \log_{10} 10^{-3}) Ecell=0.360 V0.0296×(0.30103)E_{cell} = 0.360 \text{ V} - 0.0296 \times (0.3010 - 3) Ecell=0.360 V0.0296×(2.699)E_{cell} = 0.360 \text{ V} - 0.0296 \times (-2.699) Ecell=0.360 V+0.0798904 VE_{cell} = 0.360 \text{ V} + 0.0798904 \text{ V} Ecell=0.4398904 VE_{cell} = 0.4398904 \text{ V} Rounding to three decimal places, Ecell=0.440 VE_{cell} = 0.440 \text{ V}.

5. Calculate the Gibbs Free Energy Change (ΔG\Delta G): The relationship between Gibbs free energy change and cell potential is: ΔG=nFEcell\Delta G = -nFE_{cell} Where: n = 2 (number of electrons transferred) F = 96500 C mol1mol^{-1} (Faraday constant) EcellE_{cell} = 0.4398904 V (calculated cell e.m.f.)

ΔG=2×96500 C mol1×0.4398904 V\Delta G = -2 \times 96500 \text{ C mol}^{-1} \times 0.4398904 \text{ V} ΔG=84900.70768 J mol1\Delta G = -84900.70768 \text{ J mol}^{-1} Converting to kJ/mol: ΔG=84.9007 kJ mol1\Delta G = -84.9007 \text{ kJ mol}^{-1} Rounding to two decimal places, ΔG=84.90 kJ mol1\Delta G = -84.90 \text{ kJ mol}^{-1}.