Solveeit Logo

Question

Question: Let f be a real-valued function defined on the interval (-1, 1) such that $e^{-x}f(x) = 2 + \int_{0}...

Let f be a real-valued function defined on the interval (-1, 1) such that exf(x)=2+0xt4+1dte^{-x}f(x) = 2 + \int_{0}^{x} \sqrt{t^4 + 1} dt, for all x(1,1)x \in (-1,1), and let f1f^{-1} be the inverse function of f. Then (f1)(2)(f^{-1})'(2) is equal to:

A

1

B

13\frac{1}{3}

C

12\frac{1}{2}

D

1e\frac{1}{e}

Answer

1/3

Explanation

Solution

The problem asks us to find the derivative of the inverse function, (f1)(2)(f^{-1})'(2), given a functional equation for f(x)f(x).

1. Understand the relationship between f(x)f(x) and f1(x)f^{-1}(x):

Let y=f(x)y = f(x). Then x=f1(y)x = f^{-1}(y). The derivative of the inverse function is given by the formula: (f1)(y)=1f(x)(f^{-1})'(y) = \frac{1}{f'(x)} where y=f(x)y = f(x).

In this problem, we need to find (f1)(2)(f^{-1})'(2). This means we need to find the value of xx such that f(x)=2f(x) = 2. Let this value be x0x_0. Then we will compute 1f(x0)\frac{1}{f'(x_0)}.

2. Find xx such that f(x)=2f(x) = 2:

The given equation is: exf(x)=2+0xt4+1dte^{-x}f(x) = 2 + \int_{0}^{x} \sqrt{t^4 + 1} dt

Let's try a simple value for xx, specifically x=0x=0. Substitute x=0x=0 into the equation: e0f(0)=2+00t4+1dte^{-0}f(0) = 2 + \int_{0}^{0} \sqrt{t^4 + 1} dt 1f(0)=2+01 \cdot f(0) = 2 + 0 f(0)=2f(0) = 2

So, when f(x)=2f(x) = 2, we have x=0x = 0. This means x0=0x_0 = 0. Therefore, we need to calculate (f1)(2)=1f(0)(f^{-1})'(2) = \frac{1}{f'(0)}.

3. Find f(x)f'(x) by differentiating the given equation:

Differentiate both sides of the equation exf(x)=2+0xt4+1dte^{-x}f(x) = 2 + \int_{0}^{x} \sqrt{t^4 + 1} dt with respect to xx.

Left side: Use the product rule ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv' where u=exu = e^{-x} and v=f(x)v = f(x). ddx(exf(x))=exf(x)+exf(x)\frac{d}{dx}(e^{-x}f(x)) = -e^{-x}f(x) + e^{-x}f'(x)

Right side: Use the Fundamental Theorem of Calculus, ddxaxg(t)dt=g(x)\frac{d}{dx} \int_{a}^{x} g(t) dt = g(x). ddx(2+0xt4+1dt)=0+x4+1\frac{d}{dx} \left(2 + \int_{0}^{x} \sqrt{t^4 + 1} dt\right) = 0 + \sqrt{x^4 + 1}

Equating the derivatives of both sides: exf(x)+exf(x)=x4+1-e^{-x}f(x) + e^{-x}f'(x) = \sqrt{x^4 + 1}

4. Find f(0)f'(0):

Substitute x=0x=0 into the differentiated equation: e0f(0)+e0f(0)=04+1-e^{-0}f(0) + e^{-0}f'(0) = \sqrt{0^4 + 1} 1f(0)+1f(0)=1-1 \cdot f(0) + 1 \cdot f'(0) = \sqrt{1} f(0)+f(0)=1-f(0) + f'(0) = 1

We already found that f(0)=2f(0) = 2. Substitute this value: 2+f(0)=1-2 + f'(0) = 1 f(0)=1+2f'(0) = 1 + 2 f(0)=3f'(0) = 3

5. Calculate (f1)(2)(f^{-1})'(2):

Using the formula (f1)(2)=1f(0)(f^{-1})'(2) = \frac{1}{f'(0)}: (f1)(2)=13(f^{-1})'(2) = \frac{1}{3}