Solveeit Logo

Question

Question: Solve for x: $x + \log_{10}(2^x + 1) = \log_{10} 6 + x \log_{10} 5$...

Solve for x: x+log10(2x+1)=log106+xlog105x + \log_{10}(2^x + 1) = \log_{10} 6 + x \log_{10} 5

Answer

The solution for the equation is x=1x=1.

Explanation

Solution

The given equation is x+log10(2x+1)=log106+xlog105x + \log_{10}(2^x + 1) = \log_{10} 6 + x \log_{10} 5.

Rearrange the terms to group terms involving xx: xxlog105+log10(2x+1)=log106x - x \log_{10} 5 + \log_{10}(2^x + 1) = \log_{10} 6

Factor out xx from the first two terms: x(1log105)+log10(2x+1)=log106x(1 - \log_{10} 5) + \log_{10}(2^x + 1) = \log_{10} 6

Use the property 1=log10101 = \log_{10} 10: x(log1010log105)+log10(2x+1)=log106x(\log_{10} 10 - \log_{10} 5) + \log_{10}(2^x + 1) = \log_{10} 6

Use the property logbAlogbB=logb(A/B)\log_b A - \log_b B = \log_b (A/B): xlog10(10/5)+log10(2x+1)=log106x \log_{10} (10/5) + \log_{10}(2^x + 1) = \log_{10} 6

Simplify: xlog102+log10(2x+1)=log106x \log_{10} 2 + \log_{10}(2^x + 1) = \log_{10} 6

Use the property alogbc=logbcaa \log_b c = \log_b c^a: log102x+log10(2x+1)=log106\log_{10} 2^x + \log_{10}(2^x + 1) = \log_{10} 6

Use the property logbA+logbB=logb(A×B)\log_b A + \log_b B = \log_b (A \times B): log10[2x(2x+1)]=log106\log_{10} [2^x (2^x + 1)] = \log_{10} 6

Since the logarithms are equal and have the same base, their arguments must be equal: 2x(2x+1)=62^x (2^x + 1) = 6

Let y=2xy = 2^x. Since 2x>02^x > 0 for all real xx, y>0y > 0. The equation becomes a quadratic equation in terms of yy: y(y+1)=6y(y + 1) = 6 y2+y6=0y^2 + y - 6 = 0

Factor the quadratic equation: (y+3)(y2)=0(y + 3)(y - 2) = 0

This gives two possible solutions for yy: y+3=0    y=3y + 3 = 0 \implies y = -3 y2=0    y=2y - 2 = 0 \implies y = 2

Substitute back y=2xy = 2^x: Case 1: 2x=32^x = -3. This equation has no real solution because the exponential function 2x2^x is always positive for real values of xx. Case 2: 2x=22^x = 2. This can be written as 2x=212^x = 2^1. Equating the exponents, we get x=1x = 1.

We should verify the solution x=1x=1 in the original equation. Left Hand Side (LHS): 1+log10(21+1)=1+log10(2+1)=1+log1031 + \log_{10}(2^1 + 1) = 1 + \log_{10}(2 + 1) = 1 + \log_{10} 3. Using the property 1=log10101 = \log_{10} 10, LHS =log1010+log103=log10(10×3)=log1030= \log_{10} 10 + \log_{10} 3 = \log_{10} (10 \times 3) = \log_{10} 30.

Right Hand Side (RHS): log106+1×log105=log106+log105\log_{10} 6 + 1 \times \log_{10} 5 = \log_{10} 6 + \log_{10} 5. Using the property logbA+logbB=logb(A×B)\log_b A + \log_b B = \log_b (A \times B), RHS =log10(6×5)=log1030= \log_{10} (6 \times 5) = \log_{10} 30.

Since LHS = RHS, the solution x=1x = 1 is correct.