Solveeit Logo

Question

Question: If $log_{10}5 = a$ and $log_{10}3 = b$ then :...

If log105=alog_{10}5 = a and log103=blog_{10}3 = b then :

A

log308=3(1a)b+1log_{30} 8 = \frac{3(1-a)}{b+1}

B

log4015=a+b32alog_{40} 15 = \frac{a+b}{3-2a}

C

log24332=1ablog_{243} 32 = \frac{1-a}{b}

D

log53=balog_{5} 3 = \frac{b}{a}

Answer

(A), (B), (C), (D)

Explanation

Solution

Given log105=alog_{10}5 = a and log103=blog_{10}3 = b.

We know that log1010=1log_{10}10 = 1.

Using the property logb(xy)=logbx+logbylog_b (xy) = log_b x + log_b y, we have log1010=log10(5×2)=log105+log102log_{10}10 = log_{10}(5 \times 2) = log_{10}5 + log_{10}2.

So, 1=a+log1021 = a + log_{10}2, which gives log102=1alog_{10}2 = 1 - a.

Now, we evaluate each option using the change of base formula logcx=logdxlogdclog_c x = \frac{log_d x}{log_d c} with d=10d=10.

(A) log308log_{30} 8: log308=log108log1030=log10(23)log10(3×10)=3log102log103+log1010=3(1a)b+1log_{30} 8 = \frac{log_{10} 8}{log_{10} 30} = \frac{log_{10} (2^3)}{log_{10} (3 \times 10)} = \frac{3 log_{10} 2}{log_{10} 3 + log_{10} 10} = \frac{3(1-a)}{b + 1}. Option (A) is correct.

(B) log4015log_{40} 15: log4015=log1015log1040=log10(3×5)log10(4×10)=log103+log105log10(22×10)=log103+log105log10(22)+log1010=b+a2log102+1log_{40} 15 = \frac{log_{10} 15}{log_{10} 40} = \frac{log_{10} (3 \times 5)}{log_{10} (4 \times 10)} = \frac{log_{10} 3 + log_{10} 5}{log_{10} (2^2 \times 10)} = \frac{log_{10} 3 + log_{10} 5}{log_{10} (2^2) + log_{10} 10} = \frac{b + a}{2 log_{10} 2 + 1}.

Substitute log102=1alog_{10} 2 = 1-a: a+b2(1a)+1=a+b22a+1=a+b32a\frac{a+b}{2(1-a) + 1} = \frac{a+b}{2 - 2a + 1} = \frac{a+b}{3 - 2a}. Option (B) is correct.

(C) log24332log_{243} 32: log24332=log1032log10243=log10(25)log10(35)=5log1025log103=log102log103log_{243} 32 = \frac{log_{10} 32}{log_{10} 243} = \frac{log_{10} (2^5)}{log_{10} (3^5)} = \frac{5 log_{10} 2}{5 log_{10} 3} = \frac{log_{10} 2}{log_{10} 3}.

Substitute log102=1alog_{10} 2 = 1-a and log103=blog_{10} 3 = b: 1ab\frac{1-a}{b}. Option (C) is correct.

(D) log53log_{5} 3: log53=log103log105=balog_{5} 3 = \frac{log_{10} 3}{log_{10} 5} = \frac{b}{a}. Option (D) is correct.

All four options are correct.