Solveeit Logo

Question

Question: $$I=\int_{\frac{-1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{(cosx-sinx)dx}{1+2sin2x}$$...

I=1313(cosxsinx)dx1+2sin2xI=\int_{\frac{-1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{(cosx-sinx)dx}{1+2sin2x}

Answer

Diverges

Explanation

Solution

To evaluate the integral I=1313(cosxsinx)dx1+2sin2xI=\int_{\frac{-1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{(cosx-sinx)dx}{1+2sin2x}, we must consider the possibility of singularities within the interval of integration.

First, we identify potential singularities by finding where the denominator is zero: 1+2sin(2x)=01 + 2\sin(2x) = 0 sin(2x)=12\sin(2x) = -\frac{1}{2}

The general solution for 2x2x is: 2x=π6+2nπor2x=7π6+2nπ2x = -\frac{\pi}{6} + 2n\pi \quad \text{or} \quad 2x = \frac{7\pi}{6} + 2n\pi Where nn is an integer. Thus, x=π12+nπorx=7π12+nπx = -\frac{\pi}{12} + n\pi \quad \text{or} \quad x = \frac{7\pi}{12} + n\pi

We need to determine if any of these singularities lie within the interval [13,13][-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]. Since 130.577\frac{1}{\sqrt{3}} \approx 0.577 and π120.262\frac{\pi}{12} \approx 0.262, we can see that x=π12x = -\frac{\pi}{12} is within the interval of integration.

Specifically, 13π1213-\frac{1}{\sqrt{3}} \le -\frac{\pi}{12} \le \frac{1}{\sqrt{3}} because 0.5770.2620.577-0.577 \le -0.262 \le 0.577.

Since there is a singularity at x=π12x = -\frac{\pi}{12} within the interval of integration, the integral is improper. The behavior of the integrand near this singularity determines whether the integral converges or diverges.

Let f(x)=cosxsinx1+2sin(2x)f(x) = \frac{\cos x - \sin x}{1 + 2\sin(2x)}. As xx approaches π12-\frac{\pi}{12}, the denominator approaches zero. The numerator at this point is:

cos(π12)sin(π12)=cos(π12)+sin(π12)\cos(-\frac{\pi}{12}) - \sin(-\frac{\pi}{12}) = \cos(\frac{\pi}{12}) + \sin(\frac{\pi}{12})

Since cos(π12)+sin(π12)0\cos(\frac{\pi}{12}) + \sin(\frac{\pi}{12}) \neq 0, the integrand has a non-removable singularity at x=π12x = -\frac{\pi}{12}. This implies the integral diverges.

Therefore, the given integral diverges because of the singularity at x=π12x = -\frac{\pi}{12} within the interval of integration.