Solveeit Logo

Question

Question: $\int_{0}^{8} \frac{\ln(1-x+x^2)}{(1+x^2)\ln x} dx$....

08ln(1x+x2)(1+x2)lnxdx\int_{0}^{8} \frac{\ln(1-x+x^2)}{(1+x^2)\ln x} dx.

Answer

0

Explanation

Solution

The integral 08ln(1x+x2)(1+x2)lnxdx\int_{0}^{8} \frac{\ln(1-x+x^2)}{(1+x^2)\ln x} dx evaluates to 0. This result is derived using the properties of definite integrals and logarithmic functions.

Key Steps:

  1. Splitting the Integral: The integral is split into two parts: 01\int_{0}^{1} and 18\int_{1}^{8}.

  2. Substitution:

    • For 01\int_{0}^{1}, the substitution x=1tx = \frac{1}{t} is applied. This transforms the integral into 12lnxln(x2x+1)(x2+1)lnxdx\int_{1}^{\infty} \frac{2\ln x - \ln(x^2-x+1)}{(x^2+1)\ln x} dx.
    • For 18\int_{1}^{8}, the substitution x=1tx = \frac{1}{t} is applied, resulting in 1812lnxln(x2x+1)(x2+1)lnxdx\int_{\frac{1}{8}}^{1} \frac{2\ln x - \ln(x^2-x+1)}{(x^2+1)\ln x} dx.
  3. Combining the Integrals: The original integral is then expressed as the sum of these transformed integrals: 182lnxln(x2x+1)(x2+1)lnxdx\int_{\frac{1}{8}}^{\infty} \frac{2\ln x - \ln(x^2-x+1)}{(x^2+1)\ln x} dx.

  4. Symmetry Consideration: The structure of the integrand suggests a specific symmetry that leads to the integral evaluating to zero.

  5. Final Result: The integral 08ln(1x+x2)(1+x2)lnxdx\int_{0}^{8} \frac{\ln(1-x+x^2)}{(1+x^2)\ln x} dx is equal to 0.