Question
Question: 1+tanx 1–tanx 2 = tan 4 tan 4 x x π π + − ....
1+tanx 1–tanx 2 = tan 4 tan 4 x x π π + − .
Answer
The given trigonometric identity is proved to be true.
Explanation
Solution
We start with the well‐known formula
1−tanx1+tanx=tan(x+4π).Squaring both sides gives
(1−tanx1+tanx)2=tan2(x+4π).Now note that
tan(4π+4x)=tan(x+4π)and
tan(4π−4x)=tan(4π−x).Thus, writing the right‐side of the given identity as
tan(4π−4x)tan(4π+4x)=tan(4π−x)tan(x+4π),we use the property that the angles x+4π and 4π−x are complementary (since
(x+4π)+(4π−x)=2π,and recall that if θ and 2π−θ are complementary then
tanθ⋅tan(2π−θ)=1,or equivalently,
tan(2π−θ)=tanθ1).Taking θ=x+4π we obtain:
tan(4π−x)=cot(x+4π)=tan(x+4π)1.Thus,
tan(4π−x)tan(x+4π)=tan(x+4π)⋅tan(x+4π)=tan2(x+4π).Since both the left‐side and the transformed right‐side are equal to tan2(x+4π), the identity
(1−tanx1+tanx)2=tan(4π−4x)tan(4π+4x)is verified.