Solveeit Logo

Question

Question: 1+tanx 1–tanx 2 = tan 4 tan 4 x x π π   +       −  ....

1+tanx 1–tanx 2 = tan 4 tan 4 x x π π   +       −  .

Answer

The given trigonometric identity is proved to be true.

Explanation

Solution

We start with the well‐known formula

1+tanx1tanx=tan(x+π4).\frac{1+\tan x}{1-\tan x}=\tan\Bigl(x+\frac{\pi}{4}\Bigr).

Squaring both sides gives

(1+tanx1tanx)2=tan2(x+π4).\left(\frac{1+\tan x}{1-\tan x}\right)^2=\tan^2\Bigl(x+\frac{\pi}{4}\Bigr).

Now note that

tan(π+4x4)=tan(x+π4)\tan\Bigl(\frac{\pi+4x}{4}\Bigr)=\tan\Bigl(x+\frac{\pi}{4}\Bigr)

and

tan(π4x4)=tan(π4x).\tan\Bigl(\frac{\pi-4x}{4}\Bigr)=\tan\Bigl(\frac{\pi}{4}-x\Bigr).

Thus, writing the right‐side of the given identity as

tan(π+4x4)tan(π4x4)=tan(x+π4)tan(π4x),\frac{\tan\Bigl(\frac{\pi+4x}{4}\Bigr)}{\tan\Bigl(\frac{\pi-4x}{4}\Bigr)} =\frac{\tan\Bigl(x+\frac{\pi}{4}\Bigr)}{\tan\Bigl(\frac{\pi}{4}-x\Bigr)},

we use the property that the angles x+π4x+\frac{\pi}{4} and π4x\frac{\pi}{4}-x are complementary (since

(x+π4)+(π4x)=π2,\Bigl(x+\frac{\pi}{4}\Bigr)+\Bigl(\frac{\pi}{4}-x\Bigr)=\frac{\pi}{2},

and recall that if θ\theta and π2θ\frac{\pi}{2}-\theta are complementary then

tanθtan(π2θ)=1,\tan \theta \cdot \tan\Bigl(\frac{\pi}{2}-\theta\Bigr)=1,

or equivalently,

tan(π2θ)=1tanθ).\tan\Bigl(\frac{\pi}{2}-\theta\Bigr)=\frac{1}{\tan \theta}\,).

Taking θ=x+π4\theta=x+\frac{\pi}{4} we obtain:

tan(π4x)=cot(x+π4)=1tan(x+π4).\tan\Bigl(\frac{\pi}{4}-x\Bigr)=\cot\Bigl(x+\frac{\pi}{4}\Bigr)=\frac{1}{\tan\Bigl(x+\frac{\pi}{4}\Bigr)}.

Thus,

tan(x+π4)tan(π4x)=tan(x+π4)tan(x+π4)=tan2(x+π4).\frac{\tan\Bigl(x+\frac{\pi}{4}\Bigr)}{\tan\Bigl(\frac{\pi}{4}-x\Bigr)} =\tan\Bigl(x+\frac{\pi}{4}\Bigr)\cdot \tan\Bigl(x+\frac{\pi}{4}\Bigr) =\tan^2\Bigl(x+\frac{\pi}{4}\Bigr).

Since both the left‐side and the transformed right‐side are equal to tan2(x+π4)\tan^2\Bigl(x+\frac{\pi}{4}\Bigr), the identity

(1+tanx1tanx)2=tan(π+4x4)tan(π4x4)\left(\frac{1+\tan x}{1-\tan x}\right)^2=\frac{\tan\Bigl(\frac{\pi+4x}{4}\Bigr)}{\tan\Bigl(\frac{\pi-4x}{4}\Bigr)}

is verified.