Solveeit Logo

Question

Question: $\int \frac{x^3dx}{\sqrt{1+x^2}}$...

x3dx1+x2\int \frac{x^3dx}{\sqrt{1+x^2}}

Answer

(x22)1+x23+C\frac{(x^2-2)\sqrt{1+x^2}}{3} + C

Explanation

Solution

To evaluate the indefinite integral x3dx1+x2\int \frac{x^3dx}{\sqrt{1+x^2}}, we can use substitution.

  1. Substitution: Let u=1+x2u = 1+x^2. Then du=2xdxdu = 2x dx, and x2=u1x^2 = u-1. Rewrite the integrand: x31+x2dx=x2xdx1+x2\frac{x^3}{\sqrt{1+x^2}} dx = \frac{x^2 \cdot x dx}{\sqrt{1+x^2}}.

  2. Transform the integral: Substitute the expressions in terms of uu:

    (u1)u(12du)=12(uu1u)du=12(u1/2u1/2)du\int \frac{(u-1)}{\sqrt{u}} \left(\frac{1}{2} du\right) = \frac{1}{2} \int \left(\frac{u}{\sqrt{u}} - \frac{1}{\sqrt{u}}\right) du = \frac{1}{2} \int (u^{1/2} - u^{-1/2}) du
  3. Integrate with respect to uu: Use the power rule for integration tndt=tn+1n+1+C\int t^n dt = \frac{t^{n+1}}{n+1} + C.

    12(u1/2+11/2+1u1/2+11/2+1)+C=12(u3/23/2u1/21/2)+C=12(23u3/22u1/2)+C=13u3/2u1/2+C\frac{1}{2} \left( \frac{u^{1/2+1}}{1/2+1} - \frac{u^{-1/2+1}}{-1/2+1} \right) + C = \frac{1}{2} \left( \frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2} \right) + C = \frac{1}{2} \left( \frac{2}{3} u^{3/2} - 2 u^{1/2} \right) + C = \frac{1}{3} u^{3/2} - u^{1/2} + C
  4. Substitute back u=1+x2u = 1+x^2:

    13(1+x2)3/2(1+x2)1/2+C\frac{1}{3} (1+x^2)^{3/2} - (1+x^2)^{1/2} + C
  5. Simplify the expression: Factor out (1+x2)1/2(1+x^2)^{1/2}:

    (1+x2)1/2(13(1+x2)1)+C=1+x2(1+x233)+C=1+x2(x223)+C=(x22)1+x23+C(1+x^2)^{1/2} \left( \frac{1}{3} (1+x^2) - 1 \right) + C = \sqrt{1+x^2} \left( \frac{1+x^2-3}{3} \right) + C = \sqrt{1+x^2} \left( \frac{x^2-2}{3} \right) + C = \frac{(x^2-2)\sqrt{1+x^2}}{3} + C

Thus, the integral is:

x3dx1+x2=(x22)1+x23+C\int \frac{x^3dx}{\sqrt{1+x^2}} = \frac{(x^2-2)\sqrt{1+x^2}}{3} + C