Solveeit Logo

Question

Question: Find the equations to the tangents to the ellipse 4x² + 3y² = 5 which are parallel to the straight l...

Find the equations to the tangents to the ellipse 4x² + 3y² = 5 which are parallel to the straight line y = 3x + 7. Also find points of tangency.

Answer

The equations of the tangents are y=3x+4656y = 3x + \frac{\sqrt{465}}{6} and y=3x4656y = 3x - \frac{\sqrt{465}}{6}. The points of tangency are (346562,246593)\left(-\frac{3\sqrt{465}}{62}, \frac{2\sqrt{465}}{93}\right) and (346562,246593)\left(\frac{3\sqrt{465}}{62}, -\frac{2\sqrt{465}}{93}\right).

Explanation

Solution

The standard equation of an ellipse is x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. The given ellipse 4x2+3y2=54x^2 + 3y^2 = 5 can be rewritten as x25/4+y25/3=1\frac{x^2}{5/4} + \frac{y^2}{5/3} = 1, so a2=5/4a^2 = 5/4 and b2=5/3b^2 = 5/3. The given line y=3x+7y = 3x + 7 has a slope m=3m=3. Tangents parallel to this line will also have a slope m=3m=3. The equation of a tangent to the ellipse with slope mm is y=mx±a2m2+b2y = mx \pm \sqrt{a^2m^2 + b^2}. Substituting the values of a2a^2, b2b^2, and mm, we find the equations of the tangents: y=3x±54(32)+53=3x±454+53=3x±135+2012=3x±15512=3x±155×312×3=3x±4656y = 3x \pm \sqrt{\frac{5}{4}(3^2) + \frac{5}{3}} = 3x \pm \sqrt{\frac{45}{4} + \frac{5}{3}} = 3x \pm \sqrt{\frac{135+20}{12}} = 3x \pm \sqrt{\frac{155}{12}} = 3x \pm \frac{\sqrt{155 \times 3}}{\sqrt{12 \times 3}} = 3x \pm \frac{\sqrt{465}}{6}. The points of tangency (x0,y0)(x_0, y_0) for a tangent y=mx+cy = mx + c to the ellipse are given by x0=a2mcx_0 = -\frac{a^2m}{c} and y0=b2cy_0 = \frac{b^2}{c}. For c=4656c = \frac{\sqrt{465}}{6}, x0=5/4×3465/6=15/4465/6=154×6465=904465=452465=454652×465=45465930=346562x_0 = -\frac{5/4 \times 3}{\sqrt{465}/6} = -\frac{15/4}{\sqrt{465}/6} = -\frac{15}{4} \times \frac{6}{\sqrt{465}} = -\frac{90}{4\sqrt{465}} = -\frac{45}{2\sqrt{465}} = -\frac{45\sqrt{465}}{2 \times 465} = -\frac{45\sqrt{465}}{930} = -\frac{3\sqrt{465}}{62}. And y0=5/3465/6=53×6465=303465=10465=10465465=246593y_0 = \frac{5/3}{\sqrt{465}/6} = \frac{5}{3} \times \frac{6}{\sqrt{465}} = \frac{30}{3\sqrt{465}} = \frac{10}{\sqrt{465}} = \frac{10\sqrt{465}}{465} = \frac{2\sqrt{465}}{93}. For c=4656c = -\frac{\sqrt{465}}{6}, the points of tangency are (346562,246593)\left(\frac{3\sqrt{465}}{62}, -\frac{2\sqrt{465}}{93}\right).