Solveeit Logo

Question

Question: Calculate the moment of inertia of a rod whose linear density changes from $\rho$ to $\eta\rho$ from...

Calculate the moment of inertia of a rod whose linear density changes from ρ\rho to ηρ\eta\rho from the thinner end to the thicker end.

The mass of the rod is equal to MM and length LL. Consider the axis of rotation perpendicular to the rod and passing through the thinner end. Express your answer in terms of MM, LL and η\eta.

A

16ML23η+1η+1\frac{1}{6}ML^2\frac{3\eta+1}{\eta+1}

B

13ML23η+1η+1\frac{1}{3}ML^2\frac{3\eta+1}{\eta+1}

C

16ML2η+13η+1\frac{1}{6}ML^2\frac{\eta+1}{3\eta+1}

D

13ML2η+13η+1\frac{1}{3}ML^2\frac{\eta+1}{3\eta+1}

Answer

16ML23η+1η+1\frac{1}{6}ML^2\frac{3\eta+1}{\eta+1}

Explanation

Solution

Let the linear density of the rod at a distance xx from the thinner end be λ(x)\lambda(x). Given that the density at the thinner end (x=0x=0) is ρ\rho and at the thicker end (x=Lx=L) is ηρ\eta\rho. Assuming a linear variation of density with distance, we can write λ(x)\lambda(x) as: λ(x)=ρ+(ηρρ)Lx=ρ+(η1)ρLx\lambda(x) = \rho + \frac{(\eta\rho - \rho)}{L}x = \rho + \frac{(\eta-1)\rho}{L}x

The total mass MM of the rod is given by integrating the linear density over its length: M=0Lλ(x)dx=0L(ρ+(η1)ρLx)dxM = \int_0^L \lambda(x) dx = \int_0^L \left(\rho + \frac{(\eta-1)\rho}{L}x\right) dx M=ρ[x+(η1)Lx22]0L=ρ(L+(η1)L22L)M = \rho \left[x + \frac{(\eta-1)}{L}\frac{x^2}{2}\right]_0^L = \rho \left(L + \frac{(\eta-1)L^2}{2L}\right) M=ρ(L+(η1)L2)=ρL(1+η12)=ρL(2+η12)M = \rho \left(L + \frac{(\eta-1)L}{2}\right) = \rho L \left(1 + \frac{\eta-1}{2}\right) = \rho L \left(\frac{2+\eta-1}{2}\right) M=ρLη+12M = \rho L \frac{\eta+1}{2}

From this, we can express ρ\rho in terms of MM, LL, and η\eta: ρ=2ML(η+1)\rho = \frac{2M}{L(\eta+1)}

The moment of inertia II of the rod about an axis perpendicular to the rod and passing through the thinner end (x=0x=0) is given by: I=0Lx2dm=0Lx2λ(x)dxI = \int_0^L x^2 dm = \int_0^L x^2 \lambda(x) dx I=0Lx2(ρ+(η1)ρLx)dx=ρ0L(x2+η1Lx3)dxI = \int_0^L x^2 \left(\rho + \frac{(\eta-1)\rho}{L}x\right) dx = \rho \int_0^L \left(x^2 + \frac{\eta-1}{L}x^3\right) dx I=ρ[x33+η1Lx44]0L=ρ(L33+(η1)L44L)I = \rho \left[\frac{x^3}{3} + \frac{\eta-1}{L}\frac{x^4}{4}\right]_0^L = \rho \left(\frac{L^3}{3} + \frac{(\eta-1)L^4}{4L}\right) I=ρ(L33+(η1)L34)=ρL3(13+η14)I = \rho \left(\frac{L^3}{3} + \frac{(\eta-1)L^3}{4}\right) = \rho L^3 \left(\frac{1}{3} + \frac{\eta-1}{4}\right) I=ρL3(4+3(η1)12)=ρL3(4+3η312)=ρL33η+112I = \rho L^3 \left(\frac{4 + 3(\eta-1)}{12}\right) = \rho L^3 \left(\frac{4 + 3\eta - 3}{12}\right) = \rho L^3 \frac{3\eta+1}{12}

Now, substitute the expression for ρ\rho: I=(2ML(η+1))L3(3η+112)I = \left(\frac{2M}{L(\eta+1)}\right) L^3 \left(\frac{3\eta+1}{12}\right) I=2ML3L(η+1)3η+112=2ML2η+13η+112I = \frac{2M L^3}{L(\eta+1)} \cdot \frac{3\eta+1}{12} = \frac{2M L^2}{\eta+1} \cdot \frac{3\eta+1}{12} I=16ML23η+1η+1I = \frac{1}{6} ML^2 \frac{3\eta+1}{\eta+1}