Solveeit Logo

Question

Question: If\(\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\mathbf{\log}\mathbf{(}\...

Iflimx0log(3+x)log(3x)x=k,\underset{\mathbf{x}\mathbf{\rightarrow}\mathbf{0}}{\mathbf{\lim}}\frac{\mathbf{\log}\mathbf{(}\mathbf{3 + x)}\mathbf{-}\mathbf{\log}\mathbf{(}\mathbf{3}\mathbf{-}\mathbf{x)}}{\mathbf{x}}\mathbf{= k,} then the value of k is

A

0

B

13- \frac{1}{3}

C

23\frac{2}{3}

D

23- \frac{2}{3}

Answer

23\frac{2}{3}

Explanation

Solution

limx0log(3+x)log(3x)x=limx0log(3+x3x)x=limx0log(1+(x/3)1(x/3))x=limx0log(1+(x/3))xlimx0log(1(x/3))x=13(13)=23\lim_{x \rightarrow 0}\frac{\log(3 + x) - \log(3 - x)}{x} = \lim_{x \rightarrow 0}\frac{\log\left( \frac{3 + x}{3 - x} \right)}{x} = \lim_{x \rightarrow 0}\frac{\log\left( \frac{1 + (x/3)}{1 - (x/3)} \right)}{x} = \lim_{x \rightarrow 0}\frac{\log\left( 1 + (x/3) \right)}{x} - \lim_{x \rightarrow 0}\frac{\log\left( 1 - (x/3) \right)}{x} = \frac{1}{3} - \left( - \frac{1}{3} \right) = \frac{2}{3}.