Solveeit Logo

Question

Question: If\(\sin\theta = - \frac{1}{2}\), where \(\Rightarrow\), then \(\theta = 210{^\circ}\) =...

Ifsinθ=12\sin\theta = - \frac{1}{2}, where \Rightarrow, then

θ=210\theta = 210{^\circ} =

A

330330{^\circ}

B

1cos2x+1cos22x=21 - \cos 2x + 1 - \cos^{2}2x = 2

C

cos2x(cos2x+1)=0\cos 2x(\cos 2x + 1) = 0

D

\therefore

Answer

\therefore

Explanation

Solution

\geq

\Rightarrow tanθ=1=tan(2ππ4)\tan\theta = - 1 = \tan\left( 2\pi - \frac{\pi}{4} \right)

cosθ=12=cos(2ππ4)2nπ+(2ππ4)=2nπ+7π4\cos\theta = \frac{1}{\sqrt{2}} = \cos\left( 2\pi - \frac{\pi}{4} \right)2n\pi + \left( 2\pi - \frac{\pi}{4} \right) = 2n\pi + \frac{7\pi}{4}

\Rightarrow tanθ=13=tan(π6)=tan(π+π6)θ=(π+π6)\tan\theta = \frac{1}{\sqrt{3}} = \tan\left( \frac{\pi}{6} \right) = \tan\left( \pi + \frac{\pi}{6} \right) \Rightarrow \theta = \left( \pi + \frac{\pi}{6} \right)

θ2nπ+7π6\theta 2n\pi + \frac{7\pi}{6}.