Solveeit Logo

Question

Question: If\(\overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = 0\) and out of these, two vectors...

IfP+Q+R=0\overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = 0 and out of these, two vectors are equal in magnitude and the third vector has magnitude √2 times that of 2any of these two vectors, then angles among the three vectors are

A

450, 750, 750

B

450, 900, 1350

C

900, 1350, 1800

D

900, 1350, 1350

Answer

900, 1350, 1350

Explanation

Solution

Let P = Q = x and R = √2x Using P+Q+R=0\overrightarrow{P} + \overrightarrow{Q} + \overrightarrow{R} = 0 we get, P+Q=C\overrightarrow{P} + \overrightarrow{Q} = - \overrightarrow{C}

(P+Q\overrightarrow{P} + \overrightarrow{Q}). (P+Q\overrightarrow{P} + \overrightarrow{Q}) = (R\overrightarrow{R}) .(-R\overrightarrow{R}) Then P2 + Q2 + 2PQ cos θ = R2 i.e., x2 + x2 + 2x2 cos θ = 2x2 i.e., cosθ = 900 Again Q+R\overrightarrow{Q} + \overrightarrow{R} = - P\overrightarrow{P}

(Q+R\overrightarrow{Q} + \overrightarrow{R}). (Q+R\overrightarrow{Q} + \overrightarrow{R}) = (P\overrightarrow{P}). (-P\overrightarrow{P}) Then Q2 + R2 + 2QR

cos α = P2 i.e, cos α = -1/2 √2 or φ = 1350 Third angle = 360 – (135 + 90) = 360 – 225 = 1350