Question
Question: If\(\mathbf{f(x) =}\mathbf{\tan}^{\mathbf{- 1}}\left\{ \frac{\mathbf{\log}\left( \frac{\mathbf{e}}{\...
Iff(x)=tan−1{log(ex2)log(x2e)}+tan−1(1−6logx3+2logx), then dxndny is
(n≥1)
A
tan−1{(logx)n}
B
0
C
1/2
D
None of these
Answer
0
Explanation
Solution
We have
$$$= \tan^{- 1}\left( \frac{1 - 2\log x}{1 + 2\log x} \right) + \tan^{- 1}\left( \frac{3 + 2\log x}{1 - 6\log x} \right) = \tan^{- 1}1 - \tan^{- 1}(2\log x) + \tan^{- 1}3 + \tan^{- 1}(2\log x)$ ⇒ $y = \tan^{- 1}1 + \tan^{- 1}3 \Rightarrow \frac{dy}{dx} = 0 \Rightarrow \frac{d^{n}y}{dx^{n}} = 0$.