Solveeit Logo

Question

Question: If\(\mathbf{2}^{\mathbf{x}}\mathbf{=}\mathbf{4}^{\mathbf{y}}\mathbf{=}\mathbf{8}^{\mathbf{z}}\)and\(...

If2x=4y=8z\mathbf{2}^{\mathbf{x}}\mathbf{=}\mathbf{4}^{\mathbf{y}}\mathbf{=}\mathbf{8}^{\mathbf{z}}andxyz=288,\mathbf{xyz = 288,} then12x+14y+18z=\frac{\mathbf{1}}{\mathbf{2x}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{4y}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{8z}}\mathbf{=}

A

11/48

B

11/24

C

11/8

D

11/96

Answer

11/96

Explanation

Solution

2x=22y=23zi.e.,x=2y=3z=k2^{x} = 2^{2y} = 2^{3z}i.e.,x = 2y = 3z = k (say).

Then xyz=k36=288xyz = \frac{k^{3}}{6} = 288, So k=12k = 12

x=12,y=6,z=4\therefore x = 12,y = 6,z = 4. Therefore, 12x+14y+18z=1196\frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z} = \frac{11}{96}