Solveeit Logo

Question

Question: If\(\left| \begin{matrix} x + 1 & x + 2 & x + 3 \\ x + 2 & x + 3 & x + 4 \\ x + a & x + b & x + c \e...

Ifx+1x+2x+3x+2x+3x+4x+ax+bx+c=0\left| \begin{matrix} x + 1 & x + 2 & x + 3 \\ x + 2 & x + 3 & x + 4 \\ x + a & x + b & x + c \end{matrix} \right| = 0, then a,b,ca,b,c are in.

A

A. P.

B

G. P.

C

H. P.

D

None of these

Answer

A. P.

Explanation

Solution

As given x+1x+2x+3x+2x+3x+4x+ax+bx+c=0\left| \begin{matrix} x + 1 & x + 2 & x + 3 \\ x + 2 & x + 3 & x + 4 \\ x + a & x + b & x + c \end{matrix} \right| = 0

= $\left| \begin{matrix}

  • 1 & - 1 & x + 3 \
  • 1 & - 1 & x + 4 \ a - b & b - c & x + c \end{matrix} \right| = 0,by, by C_{1} \rightarrow C_{1} - C_{2} $$C_{2} \rightarrow C_{2} - C_{3} $

\Rightarrow $\left| \begin{matrix} 0 & 0 & - 1 \

  • 1 & - 1 & x + 4 \ a - b & b - c & x + c \end{matrix} \right| = 0,by, by R_{1} \rightarrow R_{1} - R_{2}$

\Rightarrow ( - 1)( - b + c + a - b) = 0

\Rightarrow 2bac=0a+c=2b2b - a - c = 0 \Rightarrow a + c = 2b i.e., a,b,ca,b,c are in A.P.

Trick : In such type of problem, put any suitable value of x i.e. 0, so that the determinant.

\left| \begin{matrix} 1 & 2 & 3 \ 2 & 3 & 4 \ a & b & c \end{matrix} \right| = 0

\Rightarrow 1(3c - 4b) - 2(2c - 4a) + 3(2b - 3a) = 0

c+2ba=02b=a+c\Rightarrow - c + 2b - a = 0 \Rightarrow 2b = a + c.

Hence the result.