Question
Question: If\(\left| \begin{matrix} x + 1 & x + 2 & x + 3 \\ x + 2 & x + 3 & x + 4 \\ x + a & x + b & x + c \e...
Ifx+1x+2x+ax+2x+3x+bx+3x+4x+c=0, then a,b,c are in.
A
A. P.
B
G. P.
C
H. P.
D
None of these
Answer
A. P.
Explanation
Solution
As given x+1x+2x+ax+2x+3x+bx+3x+4x+c=0
= $\left| \begin{matrix}
- 1 & - 1 & x + 3 \
- 1 & - 1 & x + 4 \ a - b & b - c & x + c \end{matrix} \right| = 0,byC_{1} \rightarrow C_{1} - C_{2} $$C_{2} \rightarrow C_{2} - C_{3} $
⇒ $\left| \begin{matrix} 0 & 0 & - 1 \
- 1 & - 1 & x + 4 \ a - b & b - c & x + c \end{matrix} \right| = 0,byR_{1} \rightarrow R_{1} - R_{2}$
\Rightarrow ( - 1)( - b + c + a - b) = 0
⇒ 2b−a−c=0⇒a+c=2b i.e., a,b,c are in A.P.
Trick : In such type of problem, put any suitable value of x i.e. 0, so that the determinant.
\left| \begin{matrix} 1 & 2 & 3 \ 2 & 3 & 4 \ a & b & c \end{matrix} \right| = 0
\Rightarrow 1(3c - 4b) - 2(2c - 4a) + 3(2b - 3a) = 0
⇒−c+2b−a=0⇒2b=a+c.
Hence the result.