Solveeit Logo

Question

Question: If\(\left| \begin{matrix} (b + c)^{2} & a^{2} & a^{2} \\ b^{2} & (c + a)^{2} & b^{2} \\ c^{2} & c^{2...

If(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2=kabc(a+b+c)3\left| \begin{matrix} (b + c)^{2} & a^{2} & a^{2} \\ b^{2} & (c + a)^{2} & b^{2} \\ c^{2} & c^{2} & (a + b)^{2} \end{matrix} \right| = kabc(a + b + c)^{3}, then the value of k is.

A

– 1

B

1

C

2

D

–2

Answer

2

Explanation

Solution

Operate C2C2C1,C3C3C1C_{2} \rightarrow C_{2} - C_{1},C_{3} \rightarrow C_{3} - C_{1} and take out a+b+ca + b + c from C2C_{2} as well as from C3C_{3} to get

Δ=(a+b+c)2\Delta = (a + b + c)^{2} (b+c)2abcabcb2c+ab0c20a+bc\left| \begin{matrix} (b + c)^{2} & a - b - c & a - b - c \\ b^{2} & c + a - b & 0 \\ c^{2} & 0 & a + b - c \end{matrix} \right|

(OperateR1R1R2R3R_{1} \rightarrow R_{1} - R_{2} - R_{3})

= (a+b+c)22bc2c2bb2c+ab0c20a+bc(a + b + c)^{2}\left| \begin{matrix} 2bc & - 2c & - 2b \\ b^{2} & c + a - b & 0 \\ c^{2} & 0 & a + b - c \end{matrix} \right|

(Operate C2C2+1bC1C_{2} \rightarrow C_{2} + \frac{1}{b}C_{1} and C3C3+1cC1)C_{3} \rightarrow C_{3} + \frac{1}{c}C_{1})

= (a+b+c)22bc00b2c+ab2cc2c2ba+b(a + b + c)^{2}\left| \begin{matrix} 2bc & 0 & 0 \\ b^{2} & c + a & \frac{b^{2}}{c} \\ c^{2} & \frac{c^{2}}{b} & a + b \end{matrix} \right|

=(a+b+c)2[2bc{(a+b)(c+a)bc}]=2abc(a+b+c)3= (a + b + c)^{2}\lbrack 2bc\{(a + b)(c + a) - bc\}\rbrack = 2abc(a + b + c)^{3}.