Solveeit Logo

Question

Question: If\(\int_{}^{}{x^{–1/2}(2 + 3x^{1/3})^{- 2}dx}\) = A tan<sup>–1</sup>\(\left\{ \sqrt{\frac{3}{2}}x^{...

Ifx1/2(2+3x1/3)2dx\int_{}^{}{x^{–1/2}(2 + 3x^{1/3})^{- 2}dx} = A tan–1{32x1/6}\left\{ \sqrt{\frac{3}{2}}x^{1/6} \right\}+ B x1/62+3x1/3\frac{x^{1/6}}{2 + 3x^{1/3}}+ C then –

A

A = 16\frac{1}{6}, B = 6

B

A = B = 16\frac{1}{\sqrt{6}}

C

A = 16\frac{1}{\sqrt{6}}, B = –16\frac{1}{\sqrt{6}}

D

A = 16\frac{1}{\sqrt{6}}, B = –1

Answer

A = 16\frac{1}{\sqrt{6}}, B = –1

Explanation

Solution

Let I = x1/2\int_{}^{}x^{- 1/2} (2 + 3x1/3)–2 dx

Put x = t6 \ dx = 6t5dt

then I = t3\int_{}^{}t^{- 3} (2 + 3t2)–2 . 6t5 dt = 6

t2(2+3t2)2\int_{}^{}\frac{t^{2}}{(2 + 3t^{2})^{2}}dt =69\frac { 6 } { 9 } t2dt(23+t2)\int_{}^{}\frac{t^{2}dt}{\left( \frac{2}{3} + t^{2} \right)}

Now put t = (23)\sqrt{\left( \frac{2}{3} \right)}tan q

\ dt = (23)\sqrt{\left( \frac{2}{3} \right)}sec2 q dq

\ I = 69\frac { 6 } { 9 } 23tan2θ.(23)sec2θdθ49sec4θ\int_{}^{}\frac{\frac{2}{3}\tan^{2}\theta.\sqrt{\left( \frac{2}{3} \right)}\sec^{2}\theta d\theta}{\frac{4}{9}\sec^{4}\theta}

= 23\sqrt { \frac { 2 } { 3 } } sin2θdθ\int_{}^{}{\sin^{2}\theta d\theta}

= 16\frac{1}{\sqrt{6}} (1cos2θ)dθ\int_{}^{}{(1 - \cos 2\theta)d\theta}= 16\frac { 1 } { \sqrt { 6 } } {θsin2θ2}\left\{ \theta - \frac{\sin 2\theta}{2} \right\} + c

= 16\frac { 1 } { \sqrt { 6 } } {θtanθ1+tan2θ}\left\{ \theta - \frac{\tan\theta}{1 + \tan^{2}\theta} \right\}+ c

= 16\frac { 1 } { \sqrt { 6 } } {tan1{32t}32.t1+32t2}\left\{ \tan^{- 1}\left\{ \sqrt{\frac{3}{2}}t \right\} - \frac{\sqrt{\frac{3}{2}}.t}{1 + \frac{3}{2}t^{2}} \right\} + c

= 16\frac { 1 } { \sqrt { 6 } } {tan1{32x1/6}6x1/62+3x1/3}\left\{ \tan^{- 1}\left\{ \sqrt{\frac{3}{2}}x^{1/6} \right\} - \frac{\sqrt{6}x^{1/6}}{2 + 3x^{1/3}} \right\}

+ c{tanθ=32t}\left\{ \because\tan\theta = \sqrt{\frac{3}{2}}t \right\}