Question
Question: If\(\int_{}^{}{x^{–1/2}(2 + 3x^{1/3})^{- 2}dx}\) = A tan<sup>–1</sup>\(\left\{ \sqrt{\frac{3}{2}}x^{...
If∫x–1/2(2+3x1/3)−2dx = A tan–1{23x1/6}+ B 2+3x1/3x1/6+ C then –
A
A = 61, B = 6
B
A = B = 61
C
A = 61, B = –61
D
A = 61, B = –1
Answer
A = 61, B = –1
Explanation
Solution
Let I = ∫x−1/2 (2 + 3x1/3)–2 dx
Put x = t6 \ dx = 6t5dt
then I = ∫t−3 (2 + 3t2)–2 . 6t5 dt = 6
∫(2+3t2)2t2dt =96 ∫(32+t2)t2dt
Now put t = (32)tan q
\ dt = (32)sec2 q dq
\ I = 96 ∫94sec4θ32tan2θ.(32)sec2θdθ
= 32 ∫sin2θdθ
= 61 ∫(1−cos2θ)dθ= 61 {θ−2sin2θ} + c
= 61 {θ−1+tan2θtanθ}+ c
= 61 {tan−1{23t}−1+23t223.t} + c
= 61 {tan−1{23x1/6}−2+3x1/36x1/6}
+ c{∵tanθ=23t}