Solveeit Logo

Question

Question: If\(\int_{}^{}{\frac{1}{x + x^{5}}dx}\)= f(x) + c then \(\int_{}^{}{\frac{x^{4}}{x + x^{5}}dx}\)=...

If1x+x5dx\int_{}^{}{\frac{1}{x + x^{5}}dx}= f(x) + c then x4x+x5dx\int_{}^{}{\frac{x^{4}}{x + x^{5}}dx}=

A

log |x| – f(x) + c1

B

log |x| + f(x) + c1

C

x f(x) + c1

D

None of these

Answer

log |x| – f(x) + c1

Explanation

Solution

I1 = dxx+x5\int \frac { \mathrm { dx } } { \mathrm { x } + \mathrm { x } ^ { 5 } } = f(x)

I2 = x4x+x5\int \frac { x ^ { 4 } } { x + x ^ { 5 } }dx ̃ I1 + I2 = 1+x4x+x5\int \frac { 1 + x ^ { 4 } } { x + x ^ { 5 } } dx

= ̃ I2 = log |x| + c1 – I1