Solveeit Logo

Question

Question: If\({Im}(z) = 0\)then \({Re}(z) = 0\)...

IfIm(z)=0{Im}(z) = 0then Re(z)=0{Re}(z) = 0

A

amp(z)=πamp(z) = \pi

B

z1+z12z22|z_{1} + \sqrt{z_{1}^{2} - z_{2}^{2}}|

C

+z1z12z22+ |z_{1} - \sqrt{z_{1}^{2} - z_{2}^{2}}|

D

z1|z_{1}|

Answer

+z1z12z22+ |z_{1} - \sqrt{z_{1}^{2} - z_{2}^{2}}|

Explanation

Solution

If =tan1=π2= \tan^{- 1}\infty = \frac{\pi}{2}

arg(z1z2)=π\arg\left( \frac{z_{1}}{z_{2}} \right) = \pi

Thus arg(z1)arg(z2)=πarg(z_{1}) - arg(z_{2}) = \pi

Since the complex number lies in III quadrant, therefore

arg(z1)=arg(z2)+πarg(z_{1}) = arg(z_{2}) + \pi is

arg\arg + (z1)=π+θ(z_{1}) = \pi + \theta

Aliter : z1=z1[cos(π+θ)+isin(π+θ)]z_{1} = |z_{1}|\lbrack\cos(\pi + \theta) + i\sin(\pi + \theta)\rbrack

=z1(cosθisinθ)= |z_{1}|( - \cos\theta - i\sin\theta) or z2=z2(cosθ+isinθ)z_{2} = |z_{2}|(\cos\theta + i\sin\theta).