Solveeit Logo

Question

Question: If\(f(x) = \left\{ \begin{aligned} & \begin{matrix} x\sin\frac{1}{x}, & x \neq 0 \end{matrix} \\ &...

Iff(x)={xsin1x,x00,x=0 f(x) = \left\{ \begin{aligned} & \begin{matrix} x\sin\frac{1}{x}, & x \neq 0 \end{matrix} \\ & \begin{matrix} 0, & x = 0 \end{matrix} \end{aligned} \right.\ , then limx0f(x)\lim_{x \rightarrow 0}f(x) =

A

1

B

0

C

–1

D

None of these

Answer

0

Explanation

Solution

limx0xsin(1x)=(limx0x)(limx0sin1x)\lim_{x \rightarrow 0}x\sin\left( \frac{1}{x} \right) = \left( \lim_{x \rightarrow 0}x \right)\left( \lim_{x \rightarrow 0}\sin\frac{1}{x} \right) = 0

× (A number oscillating between – 1 and 1) = 0.