Question
Question: If\(\frac{\tan\alpha - i\left( \sin\frac{\alpha}{2} + \cos\frac{\alpha}{2} \right)}{1 + 2i\sin\frac{...
If1+2isin2αtanα−i(sin2α+cos2α) is purely imaginary, then α is given by
A
nπ + 2π
B
nπ – 4π
C
2nπ
D
None of these
Answer
2nπ
Explanation
Solution
Sol.
Re( 1+2isin2αtanα−i(sin2α+cos2α)) = 0
or Re( 1+4sin22αtanα−i(sin2α+cos2α)(1−2isin2α))
= 0 ⇒ tanα = 2 sin 2α(sin2α+cos2α)
⇒ tanα = 2 sin2 2α + sinα ⇒ cosαsinα= sinα + 1 – cosα
⇒ sinα = sinα.cosα + cosα – cos2α
⇒ sinα (1– cosα) = cosα (1 – cosα)
⇒ sinα = cosα, cosα = 1
⇒ α = nπ +4π, α = 2nπ (n∈I)