Solveeit Logo

Question

Question: If\(\frac{2\sin\alpha}{\{ 1 + \cos\alpha + \sin\alpha\}} = y,\) then \(\frac{\{ 1 - \cos\alpha + \si...

If2sinα{1+cosα+sinα}=y,\frac{2\sin\alpha}{\{ 1 + \cos\alpha + \sin\alpha\}} = y, then {1cosα+sinα}1+sinα=\frac{\{ 1 - \cos\alpha + \sin\alpha\}}{1 + \sin\alpha} =

A

1y\frac{1}{y}

B

yy

C

1y1 - y

D

1+y1 + y

Answer

yy

Explanation

Solution

We have, 2sinα1+cosα+sinα=y\frac{2\sin\alpha}{1 + \cos\alpha + \sin\alpha} = y

Then 4sinα2cosα22cos2α2+2sinα2cosα2=y\frac{4\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\cos^{2}\frac{\alpha}{2} + 2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = y

2sinα2cosα2+sinα2×(sinα2+cosα2)(sinα2+cosα2)=y\frac{2\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2} + \sin\frac{\alpha}{2}} \times \frac{\left( \sin\frac{\alpha}{2} + \cos\frac{\alpha}{2} \right)}{\left( \sin\frac{\alpha}{2} + \cos\frac{\alpha}{2} \right)} = y

1cosα+sinα1+sinα=y\frac{1 - \cos\alpha + \sin\alpha}{1 + \sin\alpha} = y.