Solveeit Logo

Question

Question: If\(\Delta = \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ x(x + 1) & x + 1 & x(x^{2} + 2) \...

IfΔ=x+1x2+2x(x+1)x(x+1)x+1x(x2+2)x2+2x(x+1)x+1=p0x6+p1x5+p2x4+p3x3+p4x2+p5x+p6\Delta = \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ x(x + 1) & x + 1 & x(x^{2} + 2) \\ x^{2} + 2 & x(x + 1) & x + 1 \end{matrix} ⥂ \right| = p_{0}x^{6} + p_{1}x^{5} + p_{2}x^{4} + p_{3}x^{3} + p_{4}x^{2} + p_{5}x + p_{6},then (p5,p6)=(p_{5},p_{6}) =

A

(–3, –9)

B

(–5, –9)

C

(–3, –5)

D

(3, –9)

Answer

(–5, –9)

Explanation

Solution

Putting x=0x = 0 in both sides, we get, 120010201=p6\left| \begin{matrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{matrix} \right| = p_{6}

\Rightarrow p6=9p_{6} = 9 by expansion.

p5p_{5} is the coefficient of x or constant term in the

differentiation of determinant.

Differentiate both sides,

1 & 2x & 2x + 1 \\ x(x + 1) & x + 1 & x(x^{2} + 2) \\ x^{2} + 2 & x(x + 1) & x + 1 \end{matrix} ⥂ \right| + \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ 2x + 1 & 1 & 3x^{2} + 2 \\ x^{2} + 2 & x(x + 1) & x + 1 \end{matrix} ⥂ \right| $$$+ \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ x(x + 1) & x + 1 & x(x^{2} + 2) \\ 2x & 2x + 1 & 1 \end{matrix} ⥂ \right|$ $= 6p_{0}x^{5} + 5p_{1}x^{4} + 4p_{2}x^{3} + 3p_{3}x^{2} + 2p_{4}x + p_{5}$Putting $x = 0$both sides, we get $p_{5} = - 5$; $\therefore(p_{5},p_{6}) = ( - 5,9)$.