Question
Question: If\(\Delta = \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ x(x + 1) & x + 1 & x(x^{2} + 2) \...
IfΔ=x+1x(x+1)x2+2x2+2x+1x(x+1)x(x+1)x(x2+2)x+1⥂=p0x6+p1x5+p2x4+p3x3+p4x2+p5x+p6,then (p5,p6)=
A
(–3, –9)
B
(–5, –9)
C
(–3, –5)
D
(3, –9)
Answer
(–5, –9)
Explanation
Solution
Putting x=0 in both sides, we get, 102210001=p6
⇒ p6=9 by expansion.
p5 is the coefficient of x or constant term in the
differentiation of determinant.
Differentiate both sides,
1 & 2x & 2x + 1 \\ x(x + 1) & x + 1 & x(x^{2} + 2) \\ x^{2} + 2 & x(x + 1) & x + 1 \end{matrix} ⥂ \right| + \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ 2x + 1 & 1 & 3x^{2} + 2 \\ x^{2} + 2 & x(x + 1) & x + 1 \end{matrix} ⥂ \right| $$$+ \left| \begin{matrix} x + 1 & x^{2} + 2 & x(x + 1) \\ x(x + 1) & x + 1 & x(x^{2} + 2) \\ 2x & 2x + 1 & 1 \end{matrix} ⥂ \right|$ $= 6p_{0}x^{5} + 5p_{1}x^{4} + 4p_{2}x^{3} + 3p_{3}x^{2} + 2p_{4}x + p_{5}$Putting $x = 0$both sides, we get $p_{5} = - 5$; $\therefore(p_{5},p_{6}) = ( - 5,9)$.