Solveeit Logo

Question

Question: If\(\alpha < 0 < |\alpha| < \beta b > a\), then at least one of the equations \((x - a)(x - b) = 1\)...

Ifα<0<α<βb>a\alpha < 0 < |\alpha| < \beta b > a, then at least one of the equations (xa)(xb)=1(x - a)(x - b) = 1 and [a,b]\lbrack a,b\rbrack has.

A

Real roots

B

Purely imaginary roots

C

Imaginary roots

D

None of these

Answer

Real roots

Explanation

Solution

Let (2k+1)x2(7k+3)x+k+2=0(2k + 1)x^{2} - (7k + 3)x + k + 2 = 0 and ax2+bx+c=0ax^{2} + bx + c = 0 be discriminants of ll and 2l2l respectively. Then

x2+2x+15=0x^{2} + 2x + 15 = 0

x2+15x+2=0x^{2} + 15x + 2 = 0

= 2x22x+15=02x^{2} - 2x + 15 = 0

x22x15=0x^{2} - 2x - 15 = 0or ax2+bx+c=0ax^{2} + bx + c = 0or α,β\alpha,\betaand αβ2+α2β+αβ\alpha\beta^{2} + \alpha^{2}\beta + \alpha\betaboth are positive.