Solveeit Logo

Question

Question: If\(a \neq b \neq c\), the value of x which satisfies the equation \(\left| \begin{matrix} 0 & x - ...

Ifabca \neq b \neq c, the value of x which satisfies the equation

0xaxbx+a0xcx+bx+c0=0\left| \begin{matrix} 0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0 \end{matrix} \right| = 0is

A

x=0x = 0

B

x=ax = a

C

x=bx = b

D

x=cx = c

Answer

x=0x = 0

Explanation

Solution

Expanding determinant, we get,

Δ=(xa)[(x+b)(xc)]+(x+b)[(x+a)(x+c)]=0\Delta = - (x - a)\lbrack - (x + b)(x - c)\rbrack + (x + b)\lbrack(x + a)(x + c)\rbrack = 0

2x3(2Σab)x=0\Rightarrow 2x^{3} - (2\Sigma ab)x = 0

\Rightarrow Either x=0x = 0 or x2=Σabx^{2} = \Sigma ab.

Since x=0x = 0 satisfies the given given equation.

Trick : On putting x=0x = 0, we observe that the determinant becomes

0 & - a & - b \\ a & 0 & - c \\ b & c & 0 \end{matrix} \right| = 0$$ $\therefore x = 0$ is a root of the given equation.