Question
Question: If\(a \neq b \neq c\), the value of x which satisfies the equation \(\left| \begin{matrix} 0 & x - ...
Ifa=b=c, the value of x which satisfies the equation
0x+ax+bx−a0x+cx−bx−c0=0is
A
x=0
B
x=a
C
x=b
D
x=c
Answer
x=0
Explanation
Solution
Expanding determinant, we get,
Δ=−(x−a)[−(x+b)(x−c)]+(x+b)[(x+a)(x+c)]=0
⇒2x3−(2Σab)x=0
⇒ Either x=0 or x2=Σab.
Since x=0 satisfies the given given equation.
Trick : On putting x=0, we observe that the determinant becomes
0 & - a & - b \\ a & 0 & - c \\ b & c & 0 \end{matrix} \right| = 0$$ $\therefore x = 0$ is a root of the given equation.