Question
Question: If z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub> are three distinct complex numbers and a, b, c are th...
If z1, z2, z3 are three distinct complex numbers and a, b, c are three positive real numbers such that ∣z2−z3∣a=∣z3−z1∣b=∣z1−z2∣c, then (z2−z3)a2+(z3−z1)b2+(z1−z2)c2=
A
0
B
Abc
C
3abc
D
A + b + c
Answer
0
Explanation
Solution
Sol. Let ∣z2−z3∣a= ∣z3−z1∣b= ∣z1−z2∣c= l (say)
Ž a = |z2 – z3|, b = l |z3 – z1|, c = l |z1 – z2|
Ž a2 = l2 |z2 – z3|2 = l2 (z2 – z3)(zˉ2−zˉ3)
\ (z2−z3)a2 = l2(zˉ2−zˉ3)
Similarly, (z3−z1)a3= l2(zˉ3−zˉ1) and(z1−z2)c2
= l2(zˉ1−zˉ2)
\ z2−z3a2+z3−z1b2+|z1−z2c2= 0.