Solveeit Logo

Question

Question: If z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub> are the complex numbers, such that \|z<sub>1</sub>\| ...

If z1, z2, z3 are the complex numbers, such that |z1| = |z2| = |z3| = 1z1+1z2+1z3\left| \frac{1}{z_{1}} + \frac{1}{z_{2}} + \frac{1}{z_{3}} \right| = 1, then

|z1 + z2 + z3| is –

A

Equal to 1

B

Less than 1

C

Greater than 1

D

Equal to 3

Answer

Equal to 1

Explanation

Solution

Sol. |z1| = |z2| = |z3| = 1 Ž zˉ1{\bar{z}}_{1}=1z1\frac{1}{z_{1}},zˉ2{\bar{z}}_{2}= 1z2\frac{1}{z_{2}}, zˉ3{\bar{z}}_{3} = 1z3\frac{1}{z_{3}}

z1+z2+z3|\overline{z_{1} + z_{2} + z_{3}}|=1z1+1z2+1z3\left| \frac{1}{z_{1}} + \frac{1}{z_{2}} + \frac{1}{z_{3}} \right| =1

Q |z­1 + z2 + z3| =z1+z2+z3|\overline{z_{1} + z_{2} + z_{3}}| zˉ1+zˉ2+zˉ3|{\bar{z}}_{1} + {\bar{z}}_{2} + {\bar{z}}_{3}|

=1z1+1z2+1z3\left| \frac{1}{z_{1}} + \frac{1}{z_{2}} + \frac{1}{z_{3}} \right| = 1 (given)