Solveeit Logo

Question

Question: If z<sub>1</sub>, z<sub>2</sub> are two complex numbers such that \(\left| \frac{z_{1} - z_{2}}{z_{1...

If z1, z2 are two complex numbers such that z1z2z1+z2\left| \frac{z_{1} - z_{2}}{z_{1} + z_{2}} \right|= 1 and iz1 = kz2, where k Ī R, then the angle between z1 – z2 and z1 + z2 is –

A

tan–12k1+k2\frac{2k}{1 + k^{2}}

B

tan–12k1k2\frac{2k}{1 - k^{2}}

C

–3 tan–1 k

D

3 tan–1 k

Answer

tan–12k1k2\frac{2k}{1 - k^{2}}

Explanation

Solution

Sol. Let angle between z1 – z2 and z1 + z2 be a.

\ z1z2z1+z2\frac{z_{1} - z_{2}}{z_{1} + z_{2}} = cos a + i sin a (z1z2z1+z2=1)\left( \because\left| \frac{z_{1} - z_{2}}{z_{1} + z_{2}} \right| = 1 \right)

Ž 2z12z2\frac{2z_{1}}{- 2z_{2}} = cosα+isinα+1cosα+isinα1\frac{\cos\alpha + i\sin\alpha + 1}{\cos\alpha + i\sin\alpha - 1}

Ž z1z2\frac{z_{1}}{z_{2}} = (1+cosα)+isinα(1cosα)isinα\frac{(1 + \cos\alpha) + i\sin\alpha}{(1 - \cos\alpha) - i\sin\alpha}

= 2cos2α2+2isinα2cosα22sin2α22isinα2cosα2\frac{2\cos^{2}\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\sin^{2}\frac{\alpha}{2} - 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}

=2cosα2(cosα2+isinα2)2sinα2(sinα2icosα2)\frac{2\cos\frac{\alpha}{2}\left( \cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2} \right)}{2\sin\frac{\alpha}{2}\left( \sin\frac{\alpha}{2} - i\cos\frac{\alpha}{2} \right)}= cosα2isinα2\frac{\cos\frac{\alpha}{2}}{- i\sin\frac{\alpha}{2}}

= i cot α2\frac{\alpha}{2}.

\ iz1 =

(i2cotα2)\left( i^{2}\cot\frac{\alpha}{2} \right)z2 = (cotα2)\left( - \cot\frac{\alpha}{2} \right)z2

But iz1 = kz2. \ k = – cot α2\frac{\alpha}{2}

\ tan α2\frac{\alpha}{2} = – 1k\frac{1}{k}

\ tan a = 2tanα21tan2α2\frac{2\tan\frac{\alpha}{2}}{1 - \tan^{2}\frac{\alpha}{2}}= 2(1k)1(1k)2\frac{2\left( - \frac{1}{k} \right)}{1 - \left( \frac{1}{k} \right)^{2}}=2kk21\frac{- 2k}{k^{2} - 1}=2k1k2\frac{2k}{1 - k^{2}}

\ a = tan–1 2k1k2\frac{2k}{1 - k^{2}}.