Solveeit Logo

Question

Question: If z<sub>1</sub>, z<sub>2</sub> are two complex numbers such that \(\left| \frac{z_{1} - z_{2}}{z_{1...

If z1, z2 are two complex numbers such that z1z2z1+z2\left| \frac{z_{1} - z_{2}}{z_{1} + z_{2}} \right| = 1 and i z1 = Kz2, where K Ī R, then the angle between z1 – z2 and z1 + z2 is –

A

tan–1(2KK2+1)\left( \frac{2K}{K^{2} + 1} \right)

B

tan–1(2K1K2)\left( \frac{2K}{1 - K^{2}} \right)

C

– 2 tan–1 K

D

2 tan–1 K

Answer

2 tan–1 K

Explanation

Solution

Sol. z1z2z1+z2\frac{z_{1} - z_{2}}{z_{1} + z_{2}} = cos a + i sin a

Ž 2z12z2\frac{2z_{1}}{- 2z_{2}} = cosα+isinα+1cosα+1+isinα\frac{\cos\alpha + i\sin\alpha + 1}{\cos\alpha + 1 + i\sin\alpha}

2cos2α/2+2isinα/2cosα/22isinα/2cosα/22sin2α/2\frac{2\cos^{2}\alpha/2 + 2i\sin\alpha/2\cos\alpha/2}{2i\sin\alpha/2\cos\alpha/2 - 2\sin^{2}\alpha/2}

Ž 2cosα/2[cosα/2+isinα/2]2isinα/2[cosα/2+isinα/2]\frac{2\cos\alpha/2\lbrack\cos\alpha/2 + i\sin\alpha/2\rbrack}{2i\sin\alpha/2\lbrack\cos\alpha/2 + i\sin\alpha/2\rbrack}

z1z2\frac{z_{1}}{z_{2}} = i cot α2\frac{\alpha}{2}

Ž iz1 = – cos α2\frac{\alpha}{2}

i z1 = k z2 \ k = – cot a/2

tan a/2 = – 1/k

tan a = 2tanα/21tan2α/2\frac{2\tan\alpha/2}{1 - \tan^{2}\alpha/2} Ž 2/k11/k2\frac{- 2/k}{1 - 1/k^{2}} Ž 2kk21\frac{- 2k}{k^{2} - 1}

a = tan–1 (2k1k2)\left( \frac{2k}{1 - k^{2}} \right) Ž 2 tan–1 (k)