Solveeit Logo

Question

Question: If z<sub>1</sub>& z<sub>2</sub> are two complex numbers satisfying the equation \(\left| \frac{z_{1}...

If z1& z2 are two complex numbers satisfying the equation z1+iz2z1iz2\left| \frac{z_{1} + iz_{2}}{z_{1} - iz_{2}} \right| = 1, then z1z2\frac{z_{1}}{z_{2}} is –

A

Purely real

B

Of unit modulus

C

Purely imaginary

D

None of these

Answer

Purely real

Explanation

Solution

Sol. |z1 + iz2|2 = |z1 – iz2|2

(z1 + iz2)(zˉ1izˉ2)({\bar{z}}_{1} - i{\bar{z}}_{2}) = (z1 –iz2)((zˉ1+izˉ2)({\bar{z}}_{1} + i{\bar{z}}_{2})

Ž zˉ1{\bar{z}}_{1}z2 = z1zˉ2{\bar{z}}_{2}

Ž z1z2\frac{z_{1}}{z_{2}} = (z1z2)\left( \frac{\overline{z_{1}}}{z_{2}} \right)

\ z1z2\frac{z_{1}}{z_{2}} is purely real.