Solveeit Logo

Question

Question: If z<sub>1</sub>& z<sub>2</sub> are two complex numbers satisfying the equation \(\left| \frac{z_{1}...

If z1& z2 are two complex numbers satisfying the equation z1+iz2z1iz2=1\left| \frac{z_{1} + iz_{2}}{z_{1}–iz_{2}} \right| = 1, then z1z2\frac{z_{1}}{z_{2}} is –

A

Purely real

B

Of unit modulus

C

Purely imaginary

D

None of these

Answer

Purely real

Explanation

Solution

| Sol. z1 + iz2|2 = |z1– iz2|2

(z1 + iz2) (z1iz2)({\overline{z}}_{1}–i{\overline{z}}_{2}) = (z1 – iz2)(z1+iz2)({\overline{z}}_{1} + i{\overline{z}}_{2})

Ž z1z2{\overline{z}}_{2}= z2z1{\overline{z}}_{1}Ž z1z2\frac{z_{1}}{z_{2}}= (z1z2)\overline{\left( \frac{z_{1}}{z_{2}} \right)}.

Thus z1z\frac{z_{1}}{z}is purely real.