Solveeit Logo

Question

Question: If z<sub>1</sub>, z<sub>2</sub> are any two complex numbers, then \(|z^{2}| = |\bar{z}|^{2}\) \(z = ...

If z1, z2 are any two complex numbers, then z2=zˉ2|z^{2}| = |\bar{z}|^{2} z=zˉz = \bar{z} is equal to.

A

zˉ2=zˉ2{\bar{z}}^{2} = {\bar{z}}^{2}

B

z|z|

C

z+2z=2\left| z + \frac{2}{z} \right| = 2

D

31\sqrt{3} - 1

Answer

31\sqrt{3} - 1

Explanation

Solution

Sol. Trick : Check by putting =z1z2z1z2=z1z2z1z2=1= \frac{|z_{1} - z_{2}|}{|\overline{z_{1} - z_{2}}|} = \frac{|z_{1} - z_{2}|}{|z_{1} - z_{2}|} = 1and z1=r1z_{1} = r_{1}.