Question
Question: If \|z<sub>1</sub>\| = \|z<sub>2</sub>\| and arg (z<sub>1</sub>) + arg (z<sub>2</sub>) = p/2, then –...
If |z1| = |z2| and arg (z1) + arg (z2) = p/2, then –
A
z1 z2 is purely real
B
z1 z2 is purely imaginary
C
(z1 + z2)2 is purely real.
D
arg (z1–1) + arg (z2–1) = 2π
Answer
z1 z2 is purely imaginary
Explanation
Solution
Sol. Let |z1| = |z2| = r
Ž z1 = r(cos q + i sin q)
and z2 = r (cos(2π−θ)+isin(2π−θ))
Ž z1z2 = r2 i, which is purely imaginary
z1 + z2 = r [(cos q + sin q) + i (cos q + sin q)]
Ž (z1 + z2)2 = 2r2 . (cos q + sin q)2 . i
which is purely imaginary.
Also arg (z1–1) + arg (z2–1) = – 2π.
Hence (2) is the correct answer.