Question
Question: If z<sub>1</sub> = a + ib and z<sub>2</sub> = c + id are complex numbers such that \|z<sub>1</sub>\|...
If z1 = a + ib and z2 = c + id are complex numbers such that |z1| = |z2| = 1 and Re (z1zˉ2)=0, then the pair of complex numbers a + ic = w1 and b + id = w2 satisfies –
|w1| ¹ 1
|w2| ¹ 1
Re(w1wˉ2) = 0
None
Re(w1wˉ2) = 0
Solution
Sol. z1 = a + ib, z2 = c + id
|z1| = |z2| = 1 Ž a2 + b2 = c2 + d2 = 1 w1 = a + ic, w2 = b + id
z1zˉ2 = (a + ib) (c – id) = (ac + bd) + i (bc – ad) as Re(z1zˉ2) = 0 Ž ac + bd = 0 Ž ac = – bd
w1wˉ2 = (a + ic) (b – id) = (ab + cd) + i (bc – ad) We have a2 + b2 = c2 + d2 Ž a2 – c2 = d2 – b2 Ž a2 – c2 + 2i ac = d2 – b2 – 2i bd (as ac = – bd)
Ž (a + ic)2 = (d – ib)2 Ž a + ic = (d – ib) or –d + ib Ž a = d and c = –b or a = –d, b = c Ž c2 + d2 = b2 + d2, a2 + c2 = a2 + b2 Ž a2 + c2 = 1, b2 + d2 = 1 Ž |w1| = |w2| = 1 also ab + cd = – cd + cd = 0 Ž Re (w1wˉ2) = 0
Hence (3) is correct answer.