Question
Question: If z<sub>1</sub> = 8 + 4i, z<sub>2</sub> = 6 + 4i and arg \(\left( \frac{z - z_{1}}{z - z_{2}} \righ...
If z1 = 8 + 4i, z2 = 6 + 4i and arg (z−z2z−z1)=4π, then z satisfies
A
| z – 7 – 4i | = 1
B
| z – 7 – 5i | = 2
C
| z – 4i | = 8
D
| z – 7i | = 18
Answer
| z – 7 – 5i | = 2
Explanation
Solution
Sol. If z−z2z−z1=(x−6)+i(y−4)(x−8)+i(y−4)
Arg (z−z2z−z1)=4π
Q Arg (z – z1) – Arg (z – z2) = 4π
tan–1(x−8y−4) – tan–1 (x−6y−4)=4π x2+y2−14x−8y+64z(y−4) = 1
x2 + y2 – 14x – 10y + 72 = 0
(x – 7)2 + (y – 5)2 = (2)2, | z – (7 + 5i) | = 2