Question
Question: If \(z_{r} = \cos\frac{r\alpha}{n^{2}} + i\sin\frac{r\alpha}{n^{2}},\) where \(r = 1,2,3,.....,n,\) ...
If zr=cosn2rα+isinn2rα, where r=1,2,3,.....,n, then
limn→∞z1z2z3.....znis equal to
A
cosα+isinα
B
cos(α/2)−isin(α/2)
C
eiα/2
D
3eiα
Answer
eiα/2
Explanation
Solution
Sol. zr=cosn2rα+isinn2rα⇒ z1=cosn2α+isinn2α;
z2=cosn22α+isinn22α;………………..
⇒ zn=cosn2nα+isinn2nα ⇒ limn→∞(z1,z2,z3,.....zn)=limn→∞[cos{n2α(1+2+3+.....+n)}+isin{n2α(1+2+3+.....+n)}] =limn→∞[cos2n2αn(n+1)+isin2n2αn(n+1)] =cos2α+isin2α=eiα/2.