Solveeit Logo

Question

Question: If $|z_1|=1, |z_2|=2, |z_3|=3$ and $|9z_1\overline{z_2}+4z_1\overline{z_3}+z_2\overline{z_3}|=12$, t...

If z1=1,z2=2,z3=3|z_1|=1, |z_2|=2, |z_3|=3 and 9z1z2+4z1z3+z2z3=12|9z_1\overline{z_2}+4z_1\overline{z_3}+z_2\overline{z_3}|=12, then find the value of z1+z2+z3|z_1+z_2+z_3|.

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Let the given complex numbers be z1,z2,z3z_1, z_2, z_3. We are given their magnitudes: z1=1|z_1|=1 z2=2|z_2|=2 z3=3|z_3|=3

From these, we have z1z1=z12=1z_1\overline{z_1} = |z_1|^2 = 1, z2z2=z22=4z_2\overline{z_2} = |z_2|^2 = 4, and z3z3=z32=9z_3\overline{z_3} = |z_3|^2 = 9. This implies z1=1/z1\overline{z_1} = 1/z_1, z2=4/z2\overline{z_2} = 4/z_2, and z3=9/z3\overline{z_3} = 9/z_3.

We are also given the condition 9z1z2+4z1z3+z2z3=12|9z_1\overline{z_2}+4z_1\overline{z_3}+z_2\overline{z_3}|=12. Let u=9z1z2u = 9z_1\overline{z_2}, v=4z1z3v = 4z_1\overline{z_3}, and w=z2z3w = z_2\overline{z_3}. Let's find the magnitudes of these terms: u=9z1z2=9z1z2=9×1×2=18|u| = |9z_1\overline{z_2}| = 9|z_1||\overline{z_2}| = 9 \times 1 \times 2 = 18. v=4z1z3=4z1z3=4×1×3=12|v| = |4z_1\overline{z_3}| = 4|z_1||\overline{z_3}| = 4 \times 1 \times 3 = 12. w=z2z3=z2z3=2×3=6|w| = |z_2\overline{z_3}| = |z_2||\overline{z_3}| = 2 \times 3 = 6.

The given condition is u+v+w=12|u+v+w|=12. We have magnitudes u=18,v=12,w=6|u|=18, |v|=12, |w|=6. For the sum of three complex numbers, u+v+wu+v+w|u+v+w| \le |u|+|v|+|w|. 1218+12+6=3612 \le 18+12+6 = 36. This is true.

Consider the case where the complex numbers u,v,wu, v, w are collinear. The value 12 can be obtained if uu and ww are in the same direction, and vv is in the opposite direction, and their magnitudes add up as 18+612=1218+6-12=12. This implies that uu and ww are in the same direction, and vv is in the opposite direction. So, arg(u)=arg(w)\arg(u) = \arg(w) and arg(v)=arg(u)+π\arg(v) = \arg(u) + \pi.

From arg(u)=arg(w)\arg(u) = \arg(w), we have u=kwu = k w for some k>0k>0. u=kw    18=k×6    k=3|u| = k|w| \implies 18 = k \times 6 \implies k=3. So, u=3wu = 3w. 9z1z2=3(z2z3)9z_1\overline{z_2} = 3(z_2\overline{z_3}) 3z1z2=z2z33z_1\overline{z_2} = z_2\overline{z_3}.

From arg(v)=arg(u)+π\arg(v) = \arg(u) + \pi, we have v=muv = -m u for some m>0m>0. v=mu    12=m×18    m=12/18=2/3|v| = m|u| \implies 12 = m \times 18 \implies m=12/18 = 2/3. So, v=23uv = -\frac{2}{3}u. 4z1z3=23(9z1z2)4z_1\overline{z_3} = -\frac{2}{3}(9z_1\overline{z_2}) 4z1z3=6z1z24z_1\overline{z_3} = -6z_1\overline{z_2} Since z10z_1 \neq 0, we can divide by z1z_1: 4z3=6z24\overline{z_3} = -6\overline{z_2}. z3=32z2\overline{z_3} = -\frac{3}{2}\overline{z_2}. Taking conjugates, z3=32z2z_3 = -\frac{3}{2}z_2.

Now we have two relations:

  1. 3z1z2=z2z33z_1\overline{z_2} = z_2\overline{z_3}
  2. z3=32z2z_3 = -\frac{3}{2}z_2

Substitute (2) into (1): 3z1z2=z2(32z2)3z_1\overline{z_2} = z_2\overline{(-\frac{3}{2}z_2)} 3z1z2=z2(32z2)3z_1\overline{z_2} = z_2(-\frac{3}{2}\overline{z_2}) 3z1z2=32z2z23z_1\overline{z_2} = -\frac{3}{2}z_2\overline{z_2} 3z1z2=32z223z_1\overline{z_2} = -\frac{3}{2}|z_2|^2 3z1z2=32(4)3z_1\overline{z_2} = -\frac{3}{2}(4) 3z1z2=63z_1\overline{z_2} = -6 z1z2=2z_1\overline{z_2} = -2.

Now we want to find z1+z2+z3|z_1+z_2+z_3|. Let S=z1+z2+z3S = z_1+z_2+z_3. S2=(z1+z2+z3)(z1+z2+z3)|S|^2 = (z_1+z_2+z_3)(\overline{z_1}+\overline{z_2}+\overline{z_3}) S2=z12+z22+z32+(z1z2+z2z1)+(z1z3+z3z1)+(z2z3+z3z2)|S|^2 = |z_1|^2+|z_2|^2+|z_3|^2 + (z_1\overline{z_2}+z_2\overline{z_1}) + (z_1\overline{z_3}+z_3\overline{z_1}) + (z_2\overline{z_3}+z_3\overline{z_2}) S2=z12+z22+z32+2Re(z1z2)+2Re(z1z3)+2Re(z2z3)|S|^2 = |z_1|^2+|z_2|^2+|z_3|^2 + 2\text{Re}(z_1\overline{z_2}) + 2\text{Re}(z_1\overline{z_3}) + 2\text{Re}(z_2\overline{z_3}).

We found z1z2=2z_1\overline{z_2} = -2. So Re(z1z2)=2\text{Re}(z_1\overline{z_2}) = -2. From z3=32z2z_3 = -\frac{3}{2}z_2, we have z3=32z2\overline{z_3} = -\frac{3}{2}\overline{z_2}. z1z3=z1(32z2)=32(z1z2)=32(2)=3z_1\overline{z_3} = z_1(-\frac{3}{2}\overline{z_2}) = -\frac{3}{2}(z_1\overline{z_2}) = -\frac{3}{2}(-2) = 3. So Re(z1z3)=3\text{Re}(z_1\overline{z_3}) = 3. z2z3=z2(32z2)=32z2z2=32z22=32(4)=6z_2\overline{z_3} = z_2(-\frac{3}{2}\overline{z_2}) = -\frac{3}{2}z_2\overline{z_2} = -\frac{3}{2}|z_2|^2 = -\frac{3}{2}(4) = -6. So Re(z2z3)=6\text{Re}(z_2\overline{z_3}) = -6.

Substitute these values into the expression for S2|S|^2: S2=1+4+9+2(2)+2(3)+2(6)|S|^2 = 1+4+9 + 2(-2) + 2(3) + 2(-6) S2=144+612|S|^2 = 14 - 4 + 6 - 12 S2=10+612|S|^2 = 10 + 6 - 12 S2=1612|S|^2 = 16 - 12 S2=4|S|^2 = 4.

Therefore, S=z1+z2+z3=4=2|S| = |z_1+z_2+z_3| = \sqrt{4} = 2.