Solveeit Logo

Question

Question: If $z_1, z_2, z_3 \in$ are the vertices of an equilateral triangle, whose centroid is $z_0$, then $\...

If z1,z2,z3z_1, z_2, z_3 \in are the vertices of an equilateral triangle, whose centroid is z0z_0, then k=13(zkz0)2\sum_{k=1}^{3}(z_k - z_0)^2 is equal to

Answer

0

Explanation

Solution

To solve this problem, we will use properties of complex numbers related to the geometry of triangles, specifically equilateral triangles.

Let the vertices of the equilateral triangle be z1,z2,z3z_1, z_2, z_3. The centroid z0z_0 of the triangle is given by the formula: z0=z1+z2+z33z_0 = \frac{z_1 + z_2 + z_3}{3}

We need to find the value of the expression k=13(zkz0)2\sum_{k=1}^{3}(z_k - z_0)^2.

Let's define new complex numbers Zk=zkz0Z_k = z_k - z_0 for k=1,2,3k=1, 2, 3. The expression we need to evaluate is Z12+Z22+Z32Z_1^2 + Z_2^2 + Z_3^2.

First, let's find the centroid of the triangle formed by Z1,Z2,Z3Z_1, Z_2, Z_3: Z1+Z2+Z33=(z1z0)+(z2z0)+(z3z0)3\frac{Z_1 + Z_2 + Z_3}{3} = \frac{(z_1 - z_0) + (z_2 - z_0) + (z_3 - z_0)}{3} =(z1+z2+z3)3z03= \frac{(z_1 + z_2 + z_3) - 3z_0}{3} Substitute z0=z1+z2+z33z_0 = \frac{z_1 + z_2 + z_3}{3} into the expression: =(z1+z2+z3)3(z1+z2+z33)3= \frac{(z_1 + z_2 + z_3) - 3\left(\frac{z_1 + z_2 + z_3}{3}\right)}{3} =(z1+z2+z3)(z1+z2+z3)3=03=0= \frac{(z_1 + z_2 + z_3) - (z_1 + z_2 + z_3)}{3} = \frac{0}{3} = 0 This means that the triangle with vertices Z1,Z2,Z3Z_1, Z_2, Z_3 is an equilateral triangle whose centroid is at the origin (0,0) in the complex plane.

For an equilateral triangle centered at the origin, its vertices can be represented as Z1,Z2,Z3Z_1, Z_2, Z_3 such that they have the same modulus and their arguments differ by 2π/32\pi/3. Let Z1=ReiθZ_1 = R e^{i\theta} for some real R>0R > 0 and angle θ\theta. Then the other two vertices can be written as Z2=Rei(θ+2π/3)Z_2 = R e^{i(\theta + 2\pi/3)} and Z3=Rei(θ+4π/3)Z_3 = R e^{i(\theta + 4\pi/3)}. Let ω=ei2π/3\omega = e^{i2\pi/3} be a complex cube root of unity. Then ω2=ei4π/3\omega^2 = e^{i4\pi/3} and ω3=1\omega^3 = 1. Also, 1+ω+ω2=01 + \omega + \omega^2 = 0. So, we can write Z2=Z1ωZ_2 = Z_1 \omega and Z3=Z1ω2Z_3 = Z_1 \omega^2.

Now, let's calculate the sum Z12+Z22+Z32Z_1^2 + Z_2^2 + Z_3^2: Z12+Z22+Z32=Z12+(Z1ω)2+(Z1ω2)2Z_1^2 + Z_2^2 + Z_3^2 = Z_1^2 + (Z_1\omega)^2 + (Z_1\omega^2)^2 =Z12+Z12ω2+Z12ω4= Z_1^2 + Z_1^2\omega^2 + Z_1^2\omega^4 Since ω4=ω3ω=1ω=ω\omega^4 = \omega^3 \cdot \omega = 1 \cdot \omega = \omega: =Z12+Z12ω2+Z12ω= Z_1^2 + Z_1^2\omega^2 + Z_1^2\omega Factor out Z12Z_1^2: =Z12(1+ω2+ω)= Z_1^2 (1 + \omega^2 + \omega) Since 1+ω+ω2=01 + \omega + \omega^2 = 0: =Z12(0)=0= Z_1^2 (0) = 0 Thus, k=13(zkz0)2=0\sum_{k=1}^{3}(z_k - z_0)^2 = 0.

Alternatively, we can expand the sum directly: k=13(zkz0)2=(z1z0)2+(z2z0)2+(z3z0)2\sum_{k=1}^{3}(z_k - z_0)^2 = (z_1 - z_0)^2 + (z_2 - z_0)^2 + (z_3 - z_0)^2 =(z122z1z0+z02)+(z222z2z0+z02)+(z322z3z0+z02)= (z_1^2 - 2z_1z_0 + z_0^2) + (z_2^2 - 2z_2z_0 + z_0^2) + (z_3^2 - 2z_3z_0 + z_0^2) =(z12+z22+z32)2z0(z1+z2+z3)+3z02= (z_1^2 + z_2^2 + z_3^2) - 2z_0(z_1 + z_2 + z_3) + 3z_0^2 Substitute z1+z2+z3=3z0z_1 + z_2 + z_3 = 3z_0: =(z12+z22+z32)2z0(3z0)+3z02= (z_1^2 + z_2^2 + z_3^2) - 2z_0(3z_0) + 3z_0^2 =(z12+z22+z32)6z02+3z02= (z_1^2 + z_2^2 + z_3^2) - 6z_0^2 + 3z_0^2 =(z12+z22+z32)3z02= (z_1^2 + z_2^2 + z_3^2) - 3z_0^2 Substitute z0=z1+z2+z33z_0 = \frac{z_1 + z_2 + z_3}{3}: =(z12+z22+z32)3(z1+z2+z33)2= (z_1^2 + z_2^2 + z_3^2) - 3\left(\frac{z_1 + z_2 + z_3}{3}\right)^2 =(z12+z22+z32)3(z1+z2+z3)29= (z_1^2 + z_2^2 + z_3^2) - 3\frac{(z_1 + z_2 + z_3)^2}{9} =(z12+z22+z32)13(z1+z2+z3)2= (z_1^2 + z_2^2 + z_3^2) - \frac{1}{3}(z_1 + z_2 + z_3)^2 Expand (z1+z2+z3)2=z12+z22+z32+2(z1z2+z2z3+z3z1)(z_1 + z_2 + z_3)^2 = z_1^2 + z_2^2 + z_3^2 + 2(z_1z_2 + z_2z_3 + z_3z_1): =(z12+z22+z32)13(z12+z22+z32+2(z1z2+z2z3+z3z1))= (z_1^2 + z_2^2 + z_3^2) - \frac{1}{3}(z_1^2 + z_2^2 + z_3^2 + 2(z_1z_2 + z_2z_3 + z_3z_1)) =3(z12+z22+z32)(z12+z22+z32)2(z1z2+z2z3+z3z1)3= \frac{3(z_1^2 + z_2^2 + z_3^2) - (z_1^2 + z_2^2 + z_3^2) - 2(z_1z_2 + z_2z_3 + z_3z_1)}{3} =2(z12+z22+z32)2(z1z2+z2z3+z3z1)3= \frac{2(z_1^2 + z_2^2 + z_3^2) - 2(z_1z_2 + z_2z_3 + z_3z_1)}{3} =23(z12+z22+z32z1z2z2z3z3z1)= \frac{2}{3}(z_1^2 + z_2^2 + z_3^2 - z_1z_2 - z_2z_3 - z_3z_1) For an equilateral triangle with vertices z1,z2,z3z_1, z_2, z_3, it is a known property that z12+z22+z32z1z2z2z3z3z1=0z_1^2 + z_2^2 + z_3^2 - z_1z_2 - z_2z_3 - z_3z_1 = 0. Therefore, the expression evaluates to: 23(0)=0\frac{2}{3}(0) = 0