Question
Question: If \(z_{1} + z_{2}\) and \(\tan^{- 1}\left( \frac{2k}{k^{2} + 1} \right)\)then z =...
If z1+z2 and tan−1(k2+12k)then z =
A
tan−1(1−k22k)
B
2tan−1k
C
2tan−1k
D
z+z1=1
Answer
2tan−1k
Explanation
Solution
cos(θ1−θ2)=0⇒θ1−θ2=2πand arg(z2z1)=2π⇒Re(z2z1)=∣z2∣∣z1∣cos(2π)=0
Let Re(z2z1)=0⇒Re(z1z2)=0, then z1z2
and ∣z1−z2∣2
=∣z1∣2+∣z2∣2−2∣z1∣∣z2∣cos(θ1−θ2) θ1=arg(z1).
and θ2=arg(z2)∵
argz1−argz2=0 ∣z1−z2∣2=∣z1∣2+∣z2∣2−2∣z1∣∣z2∣=(∣z1∣−∣z2∣)2
Trick : Since ∣z1−z2∣=∣∣z1∣−∣z2∣∣, here the complex number must lie in second quadrant, so (1) and (2) rejected. Also x1x2+y1y2=0 which satisfies (3) only.